分享
2023学年陕西省兴平市秦岭中学高考压轴卷数学试卷(含解析).doc
下载文档

ID:16400

大小:2.47MB

页数:22页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 陕西省 兴平 秦岭 中学 高考 压轴 数学试卷 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.的展开式中,含项的系数为( ) A. B. C. D. 2.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( ) A. B. C. D. 3.函数的图象如图所示,为了得到的图象,可将的图象( ) A.向右平移个单位 B.向右平移个单位 C.向左平移个单位 D.向左平移个单位 4.以下关于的命题,正确的是 A.函数在区间上单调递增 B.直线需是函数图象的一条对称轴 C.点是函数图象的一个对称中心 D.将函数图象向左平移需个单位,可得到的图象 5.已知平面向量,,,则实数x的值等于( ) A.6 B.1 C. D. 6.如图,在四边形中,,,,,,则的长度为( ) A. B. C. D. 7.已知,复数,,且为实数,则( ) A. B. C.3 D.-3 8.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( ) A. B. C. D. 9.已知函数,且关于的方程有且只有一个实数根,则实数的取值范围( ). A. B. C. D. 10.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是 A.在内总存在与平面平行的线段 B.平面平面 C.三棱锥的体积为定值 D.可能为直角三角形 11.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( ) A. B. C. D. 12.已知数列中,,(),则等于( ) A. B. C. D.2 二、填空题:本题共4小题,每小题5分,共20分。 13.已知,,是平面向量,是单位向量.若,,且,则的取值范围是________. 14.已知函数,若方程的解为,(),则_______;_______. 15.若在上单调递减,则的取值范围是_______ 16.在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:①存在两点,使;②存在两点,使与直线都成的角;③若,则四面体的体积一定是定值;④若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数与的图象关于直线对称. (为自然对数的底数) (1)若的图象在点处的切线经过点,求的值; (2)若不等式恒成立,求正整数的最小值. 18.(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点, 是上异于,的点, . (1)证明:平面平面; (2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值. 19.(12分)已知集合,集合. (1)求集合; (2)若,求实数的取值范围. 20.(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”. (1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”; 采用促销 没有采用促销 合计 精英店 非精英店 合计 50 50 100 (2)某“精英店”为了创造更大的利润,通过分析上一年度的售价 (单位:元)和日销量 (单位:件) 的一组数据后决定选择 作为回归模型进行拟合.具体数据如下表,表中的 : ①根据上表数据计算的值; ②已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大. 附①: 附②:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为. 21.(12分)已知函数. (1)求不等式的解集; (2)若关于的不等式在区间内无解,求实数的取值范围. 22.(10分)已知向量, . (1)求的最小正周期; (2)若的内角的对边分别为,且,求的面积. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数. 【题目详解】 的展开式通项为, 令,得,可得含项的系数为. 故选:B. 【答案点睛】 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题. 2、D 【答案解析】 设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案. 【题目详解】 设双曲线的左焦点为,连接,,, 设,则,,, ,根据对称性知四边形为矩形, 中:,即,解得; 中:,即,故,故. 故选:. 【答案点睛】 本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力. 3、C 【答案解析】 根据正弦型函数的图象得到,结合图像变换知识得到答案. 【题目详解】 由图象知:,∴. 又时函数值最大, 所以.又, ∴,从而,, 只需将的图象向左平移个单位即可得到的图象, 故选C. 【答案点睛】 已知函数的图象求解析式 (1).(2)由函数的周期求 (3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求. 4、D 【答案解析】 利用辅助角公式化简函数得到,再逐项判断正误得到答案. 【题目详解】 A选项,函数先增后减,错误 B选项,不是函数对称轴,错误 C选项,,不是对称中心,错误 D选项,图象向左平移需个单位得到,正确 故答案选D 【答案点睛】 本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键. 5、A 【答案解析】 根据向量平行的坐标表示即可求解. 【题目详解】 ,,, , 即, 故选:A 【答案点睛】 本题主要考查了向量平行的坐标运算,属于容易题. 6、D 【答案解析】 设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解. 【题目详解】 设,在中,由余弦定理得, 则,从而, 由正弦定理得,即, 从而, 在中,由余弦定理得:, 则. 故选:D 【答案点睛】 本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题. 7、B 【答案解析】 把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值. 【题目详解】 因为为实数,所以,解得. 【答案点睛】 本题考查复数的概念,考查运算求解能力. 8、D 【答案解析】 先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解. 【题目详解】 设四个支点所在球的小圆的圆心为,球心为, 由题意,球的体积为,即可得球的半径为1, 又由边长为的正方形硬纸,可得圆的半径为, 利用球的性质可得, 又由到底面的距离即为侧面三角形的高,其中高为, 所以球心到底面的距离为. 故选:D. 【答案点睛】 本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题. 9、B 【答案解析】 根据条件可知方程有且只有一个实根等价于函数的图象与直线只有一个交点,作出图象,数形结合即可. 【题目详解】 解:因为条件等价于函数的图象与直线只有一个交点,作出图象如图, 由图可知,, 故选:B. 【答案点睛】 本题主要考查函数图象与方程零点之间的关系,数形结合是关键,属于基础题. 10、D 【答案解析】 A项用平行于平面ABC的平面与平面MDN相交,则交线与平面ABC平行; B项利用线面垂直的判定定理; C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值; D项用反证法说明三角形DMN不可能是直角三角形. 【题目详解】 A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确; B项,如图: 当M、N分别在BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正确; C项,当M、N分别在BB1、CC1上运动时,△A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确; D项,若△DMN为直角三角形,则必是以∠MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,所以△DMN不可能为直角三角形,故错误. 故选D 【答案点睛】 本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题. 11、D 【答案解析】 设,利用余弦定理,结合双曲线的定义进行求解即可. 【题目详解】 设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知: ,因此双曲线的渐近线方程为: . 故选:D 【答案点睛】 本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力. 12、A 【答案解析】 分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决. 【题目详解】 解:∵,(), , , , , …, ∴数列是以3为周期的周期数列, , , 故选:A. 【答案点睛】 本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解. 【题目详解】 由是单位向量.若,, 设, 则,, 又, 则, 则, 则, 又, 所以,(当或时取等) 即的取值范围是,, 故答案为:,. 【答案点睛】 本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平. 14、 【答案解析】 求出在 上的对称轴,依据对称性可得的值;由可得,依据可求出的值. 【题目详解】 解:令,解得 因为,所以 关于 对称.则. 由,则 由可知,,又因为 , 所以,则,即 故答案为: ;. 【答案点睛】 本题考查了三角函数的对称轴,考查了诱导公式,考查了同角三角函数的基本关系.本题的易错点在于没有正确判断的取值范围,导致求出.在求的对称轴时,常用整体代

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开