温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
福建省
龙岩市
龙岩
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,则( )
A.函数在上单调递增 B.函数在上单调递减
C.函数图像关于对称 D.函数图像关于对称
2.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.已知正项等比数列的前项和为,且,则公比的值为( )
A. B.或 C. D.
4.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为( )
A.2 B. C. D.
5.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )
A.至少有一个样本点落在回归直线上
B.若所有样本点都在回归直线上,则变量同的相关系数为1
C.对所有的解释变量(),的值一定与有误差
D.若回归直线的斜率,则变量x与y正相关
6.已知全集为,集合,则( )
A. B. C. D.
7.设命题函数在上递增,命题在中,,下列为真命题的是( )
A. B. C. D.
8.关于函数有下述四个结论:( )
①是偶函数; ②在区间上是单调递增函数;
③在上的最大值为2; ④在区间上有4个零点.
其中所有正确结论的编号是( )
A.①②④ B.①③ C.①④ D.②④
9.函数的值域为( )
A. B. C. D.
10.点为的三条中线的交点,且,,则的值为( )
A. B. C. D.
11.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )
A. B. C. D.
12.设曲线在点处的切线方程为,则( )
A.1 B.2 C.3 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是____;最大值为____.
14.已知数列的首项,函数在上有唯一零点,则数列|的前项和__________.
15.在中,内角所对的边分别是.若,,则__,面积的最大值为___.
16.已知多项式满足,则_________,__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱柱中,底面为菱形,.
(1)证明:平面平面;
(2)若,是等边三角形,求二面角的余弦值.
18.(12分)在直角坐标平面中,已知的顶点,,为平面内的动点,且.
(1)求动点的轨迹的方程;
(2)设过点且不垂直于轴的直线与交于,两点,点关于轴的对称点为,证明:直线过轴上的定点.
19.(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,,(单位:百米).
(1)分别求,关于x的函数关系式;
(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.
20.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.
(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;
(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.
21.(12分)已知函数
(I)若讨论的单调性;
(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.
22.(10分)为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,s分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).
(1)求样本平均数的大小;
(2)若一个零件的尺寸是100 cm,试判断该零件是否属于“不合格”的零件.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;
【题目详解】
解:由,
,所以函数图像关于对称,
又,在上不单调.
故正确的只有C,
故选:C
【答案点睛】
本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.
2、A
【答案解析】
计算,得到答案.
【题目详解】
根据题意,故,表示的复数在第一象限.
故选:.
【答案点睛】
本题考查了复数的计算, 意在考查学生的计算能力和理解能力.
3、C
【答案解析】
由可得,故可求的值.
【题目详解】
因为,所以,
故,因为正项等比数列,故,所以,故选C.
【答案点睛】
一般地,如果为等比数列,为其前项和,则有性质:
(1)若,则;
(2)公比时,则有,其中为常数且;
(3) 为等比数列( )且公比为.
4、C
【答案解析】
将用向量和表示,代入可求出,再利用投影公式可得答案.
【题目详解】
解:
,
得,
则向量在上的投影为.
故选:C.
【答案点睛】
本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.
5、D
【答案解析】
对每一个选项逐一分析判断得解.
【题目详解】
回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;
所有样本点都在回归直线上,则变量间的相关系数为,故B错误;
若所有的样本点都在回归直线上,则的值与相等,故C错误;
相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.
故选D.
【答案点睛】
本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.
6、D
【答案解析】
对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,
再由交集的定义求解即可.
【题目详解】
,
,.
故选:D
【答案点睛】
本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.
7、C
【答案解析】
命题:函数在上单调递减,即可判断出真假.命题:在中,利用余弦函数单调性判断出真假.
【题目详解】
解:命题:函数,所以,当时,,即函数在上单调递减,因此是假命题.
命题:在中,在上单调递减,所以,是真命题.
则下列命题为真命题的是.
故选:C.
【答案点睛】
本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
8、C
【答案解析】
根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.
【题目详解】
的定义域为.
由于,所以为偶函数,故①正确.
由于,,所以在区间上不是单调递增函数,所以②错误.
当时,,
且存在,使.
所以当时,;
由于为偶函数,所以时,
所以的最大值为,所以③错误.
依题意,,当时,
,
所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.
综上所述,正确的结论序号为①④.
故选:C
【答案点睛】
本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.
9、A
【答案解析】
由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.
【题目详解】
,,,
因此,函数的值域为.
故选:A.
【答案点睛】
本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.
10、B
【答案解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.
【题目详解】
如图:
点为的三条中线的交点
,
由可得:,
又因,,
.
故选:B
【答案点睛】
本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.
11、A
【答案解析】
构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.
【题目详解】
构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,,所以,所以.
由得,所以,故不等式的解集为.
故选:A
【答案点睛】
本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.
12、D
【答案解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解
【题目详解】
因为,且在点处的切线的斜率为3,所以,即.
故选:D
【答案点睛】
本题考查导数的几何意义,考查运算求解能力,是基础题
二、填空题:本题共4小题,每小题5分,共20分。
13、(或写成)
【答案解析】
试题分析:设,取中点则,因此,所以,因为在单调递增,最大值为所以单调增区间是,最大值为
考点:函数最值,函数单调区间
14、
【答案解析】
由函数为偶函数,可得唯一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.
【题目详解】
因为为偶函数,在上有唯一零点,
所以,∴,∴,
∴为首项为2,公比为2的等比数列.所以,.
故答案为:
【答案点睛】
本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.
15、1
【答案解析】
由正弦定理,结合,,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.
【题目详解】
因为,所以由正弦定理可得,所以;
所以,当,即时,三角形面积最大.
故答案为(1). 1 (2).
【答案点睛】
本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.
16、
【答案解析】
∵多项式 满足
∴令,得,则
∴
∴该多项式的一次项系数为
∴
∴
∴
令,得
故答案为5,72
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)证明见解析(2)
【答案解析】
(1)根据面面垂直的判定定理可知,只需证明平面即可.
由为菱形可得,连接和与的交点,
由等腰三角形性质可得,即能证得平面;
(2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,再分别求出平面的法向量,平面的法向量,即可根据向量法求出二面角的余弦值.
【题目详解】
(1)如图,设与相交于点,连接,
又为菱形,故,为的中点.
又,故.
又平面,平面,且,
故平面,又平面,
所以平面平面.
(2)由是等边三角形,可得,故平面,
所以,,两两垂直.如图以