分享
2023学年浙江省湖州市示范中学高考数学考前最后一卷预测卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 浙江省 湖州市 示范 中学 高考 数学 考前 最后 一卷 预测 解析
2023学年高考数学模拟测试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设,,则的值为( ) A. B. C. D. 2.若不等式对恒成立,则实数的取值范围是( ) A. B. C. D. 3.执行程序框图,则输出的数值为( ) A. B. C. D. 4.椭圆的焦点为,点在椭圆上,若,则的大小为( ) A. B. C. D. 5.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为( ) A. B. C. D. 6.大衍数列,米源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为( ) A. B. C. D. 7.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( ) A. B. C. D. 8.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( ) A. B. C. D. 9.(  ) A. B. C. D. 10.设,,,则、、的大小关系为( ) A. B. C. D. 11.如图是计算值的一个程序框图,其中判断框内应填入的条件是( ) A. B. C. D. 12.函数的定义域为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知盒中有2个红球,2个黄球,且每种颜色的两个球均按,编号,现从中摸出2个球(除颜色与编号外球没有区别),则恰好同时包含字母,的概率为________. 14.已知实数,且由的最大值是_________ 15.若随机变量的分布列如表所示,则______,______. -1 0 1 16.若,则的展开式中含的项的系数为_______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在平面直角坐标系中,椭圆:的右焦点为 (,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点. ⑴求椭圆的标准方程; ⑵若时,,求实数; ⑶试问的值是否与的大小无关,并证明你的结论. 18.(12分)已知函数. (1)讨论的零点个数; (2)证明:当时,. 19.(12分)设函数. (1)解不等式; (2)记的最大值为,若实数、、满足,求证:. 20.(12分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于. (1)求证:平面平面; (2)求二面角的余弦值. 21.(12分)已知公差不为零的等差数列的前n项和为,,是与的等比中项. (1)求; (2)设数列满足,,求数列的通项公式. 22.(10分)如图,已知四边形的直角梯形,∥BC,,,,为线段的中点,平面,,为线段上一点(不与端点重合). (1)若, (ⅰ)求证:PC∥平面; (ⅱ)求平面与平面所成的锐二面角的余弦值; (2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果. 【题目详解】 ,, ,, ,,, , 故选:D. 【答案点睛】 该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目. 2、B 【答案解析】 转化为,构造函数,利用导数研究单调性,求函数最值,即得解. 【题目详解】 由,可知. 设,则, 所以函数在上单调递增, 所以. 所以. 故的取值范围是. 故选:B 【答案点睛】 本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 3、C 【答案解析】 由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案. 【题目详解】 ,,,,,满足条件, ,,,,满足条件, ,,,,满足条件, ,,,,满足条件, ,,,,不满足条件, 输出. 故选:C 【答案点睛】 本题主要考查程序框图中的循环结构,属于简单题. 4、C 【答案解析】 根据椭圆的定义可得,,再利用余弦定理即可得到结论. 【题目详解】 由题意,,,又,则, 由余弦定理可得. 故. 故选:C. 【答案点睛】 本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题. 5、A 【答案解析】 根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可. 【题目详解】 依题意如图所示: 取的中点,则是等腰梯形外接圆的圆心, 取是的外心,作平面平面, 则是四棱锥的外接球球心,且, 设四棱锥的外接球半径为,则,而, 所以, 故选:A. 【答案点睛】 本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题. 6、B 【答案解析】 直接代入检验,排除其中三个即可. 【题目详解】 由题意,排除D,,排除A,C.同时B也满足,,, 故选:B. 【答案点睛】 本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解. 7、A 【答案解析】 求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值. 【题目详解】 抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A. 【答案点睛】 本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题. 8、D 【答案解析】 可设的内切圆的圆心为,设,,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值. 【题目详解】 可设的内切圆的圆心为,为切点,且为中点,, 设,,则,且有,解得,, 设,,设圆切于点,则,, 由,解得,, ,所以为等边三角形, 所以,,解得. 因此,该椭圆的离心率为. 故选:D. 【答案点睛】 本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题. 9、B 【答案解析】 利用复数代数形式的乘除运算化简得答案. 【题目详解】 . 故选B. 【答案点睛】 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 10、D 【答案解析】 因为,, 所以且在上单调递减,且 所以,所以, 又因为,,所以, 所以. 故选:D. 【答案点睛】 本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小. 11、B 【答案解析】 根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式. 【题目详解】 因为该程序图是计算值的一个程序框圈 所以共循环了5次 所以输出S前循环体的n的值为12,k的值为6, 即判断框内的不等式应为或 所以选C 【答案点睛】 本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题. 12、C 【答案解析】 函数的定义域应满足 故选C. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 根据组合数得出所有情况数及两个球颜色不相同的情况数,让两个球颜色不相同的情况数除以总情况数即为所求的概率. 【题目详解】 从袋中任意地同时摸出两个球共种情况,其中有种情况是两个球颜色不相同; 故其概率是 故答案为:. 【答案点睛】 本题主要考查了求事件概率,解题关键是掌握概率的基础知识和组合数计算公式,考查了分析能力和计算能力,属于基础题. 14、 【答案解析】 将其转化为几何意义,然后根据最值的条件求出最大值 【题目详解】 由化简得,又实数,图形为圆,如图: ,可得, 则 由几何意义得,则,为求最大值则当过点或点时取最小值,可得 所以的最大值是 【答案点睛】 本题考查了二元最值问题,将其转化为几何意义,得到圆的方程及斜率问题,对要求的二元二次表达式进行化简,然后求出最值问题,本题有一定难度。 15、 【答案解析】 首先求得a的值,然后利用均值的性质计算均值,最后求得的值,由方差的性质计算的值即可. 【题目详解】 由题意可知,解得(舍去)或. 则, 则, 由方差的计算性质得. 【答案点睛】 本题主要考查分布列的性质,均值的计算公式,方差的计算公式,方差的性质等知识,意在考查学生的转化能力和计算求解能力. 16、 【答案解析】 首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果. 【题目详解】 , 根据二项式展开式通项:, 令,解得, 所以含的项的系数. 故答案为: 【答案点睛】 本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)(2)(3)为定值 【答案解析】 试题分析:(1)利用待定系数法可得,椭圆方程为; (2)我们要知道=的条件应用,在于直线交椭圆两交点M,N的横坐标为,这样代入椭圆方程,容易得到,从而解得; (3) 需讨论斜率是否存在.一方面斜率不存在即=时,由(2)得;另一方面,当斜率存在即时,可设直线的斜率为,得直线MN:,联立直线与椭圆方程,利用韦达定理和焦半径公式,就能得到,所以为定值,与直线的倾斜角的大小无关 试题解析:(1),得:,椭圆方程为 (2)当时,,得:, 于是当=时,,于是, 得到 (3)①当=时,由(2)知 ②当时,设直线的斜率为,,则直线MN: 联立椭圆方程有, ,, =+== 得 综上,为定值,与直线的倾斜角的大小无关 考点:(1)待定系数求椭圆方程;(2)椭圆简单的几何性质;(3)直线与圆锥曲线 18、(1)见解析(2)见解析 【答案解析】 (1)求出,分别以当,,时,结合函数的单调性和最值判断零点的个数.(2)令,结合导数求出;同理可求出满足,从而可得,进而证明. 【题目详解】 解析:(1),, 当时,,单调递减,,,此时有1个零点; 当时,无零点; 当时,由得,由得,∴在单调递减,在单调递增,∴在处取得最小值, 若,则,此时没有零点; 若,则,此时有1个零点; 若,则,,求导易得,此时在,上各有1个零点. 综上可得时,没有零点,或时,有1个零点,时,有2个零点. (2)令,则,当时,;当时,,∴. 令,则, 当时,,当时,,∴

此文档下载收益归作者所有

下载文档
猜你喜欢
你可能关注的文档
收起
展开