温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
福建省
三明
一中
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设等比数列的前项和为,若,则的值为( )
A. B. C. D.
2.在中,,,,点,分别在线段,上,且,,则( ).
A. B. C.4 D.9
3.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )
A. B.2 C.4 D.
4.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是( )
A. B.
C. D.
5.已知,,,则( )
A. B.
C. D.
6.已知三棱锥中,为的中点,平面,,,则有下列四个结论:①若为的外心,则;②若为等边三角形,则;③当时,与平面所成的角的范围为;④当时,为平面内一动点,若OM∥平面,则在内轨迹的长度为1.其中正确的个数是( ).
A.1 B.1 C.3 D.4
7.已知纯虚数满足,其中为虚数单位,则实数等于( )
A. B.1 C. D.2
8.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:
0.01
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
得到正确结论是( )
A.有99%以上的把握认为“学生性别与中学生追星无关”
B.有99%以上的把握认为“学生性别与中学生追星有关”
C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”
D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”
9.设递增的等比数列的前n项和为,已知,,则( )
A.9 B.27 C.81 D.
10.已知集合则( )
A. B. C. D.
11.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是( )
A. B. C. D.1
12.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知实数,满足则的取值范围是______.
14.已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数__________.
15.在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_____.
16.的展开式中,项的系数是__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.
(1)求的值;
(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?
文科生
理科生
合计
获奖
6
不获奖
合计
400
(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.
附:,其中.
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
18.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.
(1)求圆的方程;
(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.
19.(12分)已知函数,记的最小值为.
(Ⅰ)解不等式;
(Ⅱ)若正实数,满足,求证:.
20.(12分)已知,,不等式恒成立.
(1)求证:
(2)求证:.
21.(12分)已知函数.
(1)当时,求不等式的解集;
(2)若的图象与轴围成的三角形面积大于6,求的取值范围.
22.(10分)已知函数,.
(1)若时,解不等式;
(2)若关于的不等式在上有解,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
求得等比数列的公比,然后利用等比数列的求和公式可求得的值.
【题目详解】
设等比数列的公比为,,,,
因此,.
故选:C.
【答案点睛】
本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.
2、B
【答案解析】
根据题意,分析可得,由余弦定理求得的值,由可得结果.
【题目详解】
根据题意,,则
在中,又,
则
则
则
则
故选:B
【答案点睛】
此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.
3、C
【答案解析】
设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.
【题目详解】
圆可化为.
设,
则的斜率分别为,
所以的方程为,即,
,即,
由于都过点,所以,
即都在直线上,
所以直线的方程为,恒过定点,
即直线过圆心,
则直线截圆所得弦长为4.
故选:C.
【答案点睛】
本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.
4、D
【答案解析】
利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.
【题目详解】
因为,,
故.
又,故.
因为当时,函数是单调递减函数,
所以.
因为为偶函数,故,
所以.
故选:D.
【答案点睛】
本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.
5、C
【答案解析】
利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.
【题目详解】
,
所以,即.
故选:C.
【答案点睛】
本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.
6、C
【答案解析】
由线面垂直的性质,结合勾股定理可判断①正确; 反证法由线面垂直的判断和性质可判断②错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断③正确;由面面平行的性质定理可得线面平行,可得④正确.
【题目详解】
画出图形:
若为的外心,则,
平面,可得,即,①正确;
若为等边三角形,,又
可得平面,即,由可得
,矛盾,②错误;
若,设与平面所成角为
可得,
设到平面的距离为
由可得
即有,当且仅当取等号.
可得的最大值为,
即的范围为,③正确;
取中点,的中点,连接
由中位线定理可得平面平面
可得在线段上,而,可得④正确;
所以正确的是:①③④
故选:C
【答案点睛】
此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.
7、B
【答案解析】
先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.
【题目详解】
因为,所以,
又因为是纯虚数,所以,所以.
故选:B.
【答案点睛】
本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.
8、B
【答案解析】
通过与表中的数据6.635的比较,可以得出正确的选项.
【题目详解】
解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.
【答案点睛】
本题考查了独立性检验的应用问题,属于基础题.
9、A
【答案解析】
根据两个已知条件求出数列的公比和首项,即得的值.
【题目详解】
设等比数列的公比为q.
由,得,解得或.
因为.且数列递增,所以.
又,解得,
故.
故选:A
【答案点睛】
本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.
10、B
【答案解析】
解对数不等式可得集合A,由交集运算即可求解.
【题目详解】
集合解得
由集合交集运算可得,
故选:B.
【答案点睛】
本题考查了集合交集的简单运算,对数不等式解法,属于基础题.
11、B
【答案解析】
先根据导数的几何意义写出 在 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数 ,结合导数求出最小值,即可选出正确答案.
【题目详解】
解:当 时,,则;当时,
则.设 为函数图像上的两点,
当 或时,,不符合题意,故.
则在 处的切线方程为;
在 处的切线方程为.由两切线重合可知
,整理得.不妨设
则 ,由 可得
则当时, 的最大值为.
则在 上单调递减,则.
故选:B.
【答案点睛】
本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出 和 的函数关系式.本题的易错点是计算.
12、A
【答案解析】
设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.
【题目详解】
设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上
的双曲线”,由题意,,,则所求的概率为
.
故选:A.
【答案点睛】
本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.
【题目详解】
.
由题意,画出约束条件表示的平面区域如下图所示,
令,则
如图所示,图中直线所示的两个位置为的临界位置,
根据几何关系可得与轴的两个交点分别为,
所以的取值范围为.
故答案为:
【答案点睛】
本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.
14、
【答案解析】
由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率.注意对称性,问题应该有两解.
【题目详