温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
曲靖市
宜良县
第六
中学
2023
学年
下学
期一模
考试
数学试题
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在上函数的图象关于原点对称,且,若,则( )
A.0 B.1 C.673 D.674
2.设向量,满足,,,则的取值范围是
A. B.
C. D.
3.如图,在四边形中,,,,,,则的长度为( )
A. B.
C. D.
4.已知函数,,则的极大值点为( )
A. B. C. D.
5.下列函数中,在区间上单调递减的是( )
A. B. C. D.
6.已知数列的通项公式是,则( )
A.0 B.55 C.66 D.78
7.已知正项等比数列中,存在两项,使得,,则的最小值是( )
A. B. C. D.
8.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=( )
A. B. C. D.
9.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入
A. B.
C. D.
10.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为( )
A. B. C. D.
11.在长方体中,,则直线与平面所成角的余弦值为( )
A. B. C. D.
12.下列不等式正确的是( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.函数的图象在处的切线与直线互相垂直,则_____.
14.已知集合,若,则__________.
15.若,则__________.
16.(5分)在平面直角坐标系中,过点作倾斜角为的直线,已知直线与圆相交于两点,则弦的长等于____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.
(1)求数列{an}的通项an;
(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.
18.(12分)已知函数,其中.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)设,求证:;
(Ⅲ)若对于恒成立,求的最大值.
19.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.
设正数等比数列的前项和为,是等差数列,__________,,,,是否存在正整数,使得成立?
20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.
(1)求曲线的参数方程;
(2)求面积的最大值.
21.(12分)如图,在正四棱锥中,,,为上的四等分点,即.
(1)证明:平面平面;
(2)求平面与平面所成锐二面角的余弦值.
22.(10分)已知分别是的内角的对边,且.
(Ⅰ)求.
(Ⅱ)若,,求的面积.
(Ⅲ)在(Ⅱ)的条件下,求的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.
【题目详解】
因为为奇函数,故;
因为,故,
可知函数的周期为3;
在中,令,故,
故函数在一个周期内的函数值和为0,
故.
故选:B.
【答案点睛】
本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.
2、B
【答案解析】
由模长公式求解即可.
【题目详解】
,
当时取等号,所以本题答案为B.
【答案点睛】
本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.
3、D
【答案解析】
设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.
【题目详解】
设,在中,由余弦定理得,
则,从而,
由正弦定理得,即,
从而,
在中,由余弦定理得:,
则.
故选:D
【答案点睛】
本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.
4、A
【答案解析】
求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可.
【题目详解】
因为,
故可得,
令,因为,
故可得或,
则在区间单调递增,
在单调递减,在单调递增,
故的极大值点为.
故选:A.
【答案点睛】
本题考查利用导数求函数的极值点,属基础题.
5、C
【答案解析】
由每个函数的单调区间,即可得到本题答案.
【题目详解】
因为函数和在递增,而在递减.
故选:C
【答案点睛】
本题主要考查常见简单函数的单调区间,属基础题.
6、D
【答案解析】
先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结果.
【题目详解】
解:由题意得,当为奇数时,,
当为偶数时,
所以当为奇数时,;当为偶数时,,
所以
故选:D
【答案点睛】
此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.
7、C
【答案解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.
【题目详解】
,,或(舍).
,,.
当,时;
当,时;
当,时,,所以最小值为.
故选:C.
【答案点睛】
本题考查等比数列通项公式基本量的计算及最小值,属于基础题.
8、C
【答案解析】
设,则,,,设,根据化简得到,得到答案.
【题目详解】
设,则,,,则,设,
则,两式相减得到:,
,,即,,
,故,即,故,故.
故选:.
【答案点睛】
本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.
9、C
【答案解析】
由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.
10、B
【答案解析】
延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.
【题目详解】
解:延长到,使,连接,则四边形为平行四边形,
则,,,
在中,
则,得,
.
故选:B.
【答案点睛】
本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.
11、C
【答案解析】
在长方体中, 得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.
【题目详解】
在长方体中,平面即为平面,
过做于,平面,
平面,
平面,为与平面所成角,
在,
,
直线与平面所成角的余弦值为.
故选:C.
【答案点睛】
本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.
12、D
【答案解析】
根据,利用排除法,即可求解.
【题目详解】
由,
可排除A、B、C选项,
又由,
所以.
故选D.
【答案点睛】
本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1.
【答案解析】
求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.
【题目详解】
函数的图象在处的切线与直线垂直,
函数的图象在的切线斜率
本题正确结果:
【答案点睛】
本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.
14、1
【答案解析】
分别代入集合中的元素,求出值,再结合集合中元素的互异性进行取舍可解.
【题目详解】
依题意,分别令,,,
由集合的互异性,解得,则.
故答案为:
【答案点睛】
本题考查集合元素的特性:确定性、互异性、无序性.确定集合中元素,要注意检验集合中的元素是否满足互异性.
15、
【答案解析】
因为,由二倍角公式得到 ,故得到
.
故答案为.
16、
【答案解析】
方法一:依题意,知直线的方程为,代入圆的方程化简得,解得或,从而得或,则.
方法二:依题意,知直线的方程为,代入圆的方程化简得,设,则,故.
方法三:将圆的方程配方得,其半径,圆心到直线的距离,则.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1).(2)
【答案解析】
(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列出关于d的方程,解出d的值,即可得到数列{an}的通项an;
(2)先根据第(1)题的结果计算出数列{bn}的通项公式,然后运用错位相减法计算前n项和Tn.
【题目详解】
(1)由题意,设等差数列{an}的公差为d(d>0),则
a4a5=(1+3d)(1+4d)=11,
整理,得12d2+7d﹣10=0,
解得d(舍去),或d,
∴an=1(n﹣1),n∈N*.
(2)由(1)知,bn=an⋅3n•3n=(2n+1)•3n﹣1,
∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)•3n﹣1,
∴3Tn=3×31+5×32+…+(2n﹣1)•3n﹣1+(2n+1)•3n,
两式相减,可得:
﹣2Tn=3×1+2×31+2×32+…+2•3n﹣1﹣(2n+1)•3n
=3+2×(31+32+…+3n﹣1)﹣(2n+1)•3n
=3+2(2n+1)•3n
=﹣2n•3n,
∴Tn=n•3n.
【答案点睛】
本题主要考查等差数列基本量的计算,以及运用错位相减法计算前n项和.考查了转化与化归思想,方程思想,错位相减法的运用,以及逻辑思维能力和数学运算能力.属于中档题.
18、(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).
【答案解析】
(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.
【题目详解】
(Ⅰ)当时,,
则,所以,
又因为,所以在上为增函数,
因为,所以当时,,为增函数,
当时,,为减函数,
即