温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
上海
华东师大
附中
2023
学年
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:
(1)四面体EBCD的体积有最大值和最小值;
(2)存在某个位置,使得;
(3)设二面角的平面角为,则;
(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.
其中,正确说法的个数是( )
A.1 B.2 C.3 D.4
2.设为锐角,若,则的值为( )
A. B. C. D.
3.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为( )
A.1 B.2 C.3 D.4
4.如图所示,矩形的对角线相交于点,为的中点,若,则等于( ).
A. B. C. D.
5.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.
由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:
黄赤交角
正切值
0.439
0.444
0.450
0.455
0.461
年代
公元元年
公元前2000年
公元前4000年
公元前6000年
公元前8000年
根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )
A.公元前2000年到公元元年 B.公元前4000年到公元前2000年
C.公元前6000年到公元前4000年 D.早于公元前6000年
6.设是虚数单位,复数( )
A. B. C. D.
7.的展开式中的常数项为( )
A.-60 B.240 C.-80 D.180
8.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=( )
A. B. C.2 D.﹣2
9.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )
A.12个月的PMI值不低于50%的频率为
B.12个月的PMI值的平均值低于50%
C.12个月的PMI值的众数为49.4%
D.12个月的PMI值的中位数为50.3%
10.已知向量,是单位向量,若,则( )
A. B. C. D.
11.己知函数的图象与直线恰有四个公共点,其中,则( )
A. B.0 C.1 D.
12.已知集合,,则集合子集的个数为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如图,已知,,为的中点,为以为直径的圆上一动点,则的最小值是_____.
14.数据的标准差为_____.
15.已知矩形 ABCD,AB= 4 ,BC =3,以 A, B 为焦点,且 过 C, D 两点的双曲线的离心率为____________.
16.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0的对称点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图所示,在三棱柱中,为等边三角形,,,平面,是线段上靠近的三等分点.
(1)求证:;
(2)求直线与平面所成角的正弦值.
18.(12分)已知数列的前项和为,且点在函数的图像上;
(1)求数列的通项公式;
(2)设数列满足:,,求的通项公式;
(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;
19.(12分)如图所示,直角梯形中,,,,四边形为矩形,.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.
20.(12分)已知
(1)若 ,且函数 在区间 上单调递增,求实数a的范围;
(2)若函数有两个极值点 ,且存在 满足 ,令函数 ,试判断 零点的个数并证明.
21.(12分)的内角A,B,C的对边分别为a,b,c,已知.
(1)求B;
(2)若,求的面积的最大值.
22.(10分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.
(1)证明:点始终在直线上且;
(2)求四边形的面积的最小值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
解:对于(1),当CD⊥平面ABE,且E在AB的右上方时,E到平面BCD的距离最大,当CD⊥平面ABE,且E在AB的左下方时,E到平面BCD的距离最小,
∴四面体E﹣BCD的体积有最大值和最小值,故(1)正确;
对于(2),连接DE,若存在某个位置,使得AE⊥BD,又AE⊥BE,则AE⊥平面BDE,可得AE⊥DE,进一步可得AE=DE,此时E﹣ABD为正三棱锥,故(2)正确;
对于(3),取AB中点O,连接DO,EO,则∠DOE为二面角D﹣AB﹣E的平面角,为θ,
直角边AE绕斜边AB旋转,则在旋转的过程中,θ∈[0,π),
∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正确;
对于(4)AE的中点M与AB的中点N连线交平面BCD于点P,P到BC的距离为:dP﹣BC,
因为<1,所以点P的轨迹为椭圆.(4)正确.
故选:C.
点睛:该题考查的是有关多面体和旋转体对应的特征,以几何体为载体,考查相关的空间关系,在解题的过程中,需要认真分析,得到结果,注意对知识点的灵活运用.
2、D
【答案解析】
用诱导公式和二倍角公式计算.
【题目详解】
.
故选:D.
【答案点睛】
本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.
3、C
【答案解析】
试题分析:根据题意,当时,令,得;当时,令,得
,故输入的实数值的个数为1.
考点:程序框图.
4、A
【答案解析】
由平面向量基本定理,化简得,所以,即可求解,得到答案.
【题目详解】
由平面向量基本定理,化简
,所以,即,
故选A.
【答案点睛】
本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.
5、D
【答案解析】
先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项.
【题目详解】
解:由题意,可设冬至日光与垂直线夹角为,春秋分日光与垂直线夹角为,
则即为冬至日光与春秋分日光的夹角,即黄赤交角,
将图3近似画出如下平面几何图形:
则,,
.
,
估计该骨笛的大致年代早于公元前6000年.
故选:.
【答案点睛】
本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.
6、D
【答案解析】
利用复数的除法运算,化简复数,即可求解,得到答案.
【题目详解】
由题意,复数,故选D.
【答案点睛】
本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.
7、D
【答案解析】
求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.
【题目详解】
由题意,中常数项为,
中项为,
所以的展开式中的常数项为:
.
故选:D
【答案点睛】
本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.
8、D
【答案解析】
化简z=(1+2i)(1+ai)=,再根据z∈R求解.
【题目详解】
因为z=(1+2i)(1+ai)=,
又因为z∈R,
所以,
解得a=-2.
故选:D
【答案点睛】
本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.
9、D
【答案解析】
根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.
【题目详解】
对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;
对B,由图可以看出,PMI值的平均值低于50%,故B正确;
对C,12个月的PMI值的众数为49.4%,故C正确,;
对D,12个月的PMI值的中位数为49.6%,故D错误
故选:D.
【答案点睛】
本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.
10、C
【答案解析】
设,根据题意求出的值,代入向量夹角公式,即可得答案;
【题目详解】
设,,
是单位向量,,
,,
联立方程解得:或
当时,;
当时,;
综上所述:.
故选:C.
【答案点睛】
本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.
11、A
【答案解析】
先将函数解析式化简为,结合题意可求得切点及其范围,根据导数几何意义,即可求得的值.
【题目详解】
函数
即
直线与函数图象恰有四个公共点,结合图象知直线与函数相切于,,
因为,
故,
所以.
故选:A.
【答案点睛】
本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.
12、B
【答案解析】
首先求出,再根据含有个元素的集合有个子集,计算可得.
【题目详解】
解:,,
,
子集的个数为.
故选:.
【答案点睛】
考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
建立合适的直角坐标系,求出相关点的坐标,进而可得的坐标表示,利用平面向量数量积的坐标表示求出的表达式,求出其最小值即可.
【题目详解】
建立直角坐标系如图所示:
则点,,,
设点,
所以,
由平面向量数量积的坐标表示可得,
,其中,
因为,
所以的最小值为.
故答案为:
【答案点睛】
本题考查平面向量数量积的坐标表示和利用辅助角公式求最值;考查数形结合思想和转化与化归能力、运算求解能力;建立直角坐标系,把表示为关于角的三角函数,利用辅助角公式求最值是求解本题的关键;属于中档题.
14、
【答案解析】
先计算平均数再求解方差与标准差即可.
【题目详解】
解:样本的平均数,
这组数据的方差是
标准差,
故答案为:
【答案点睛】
本题主要考查了标准差的计算,属于基础题.
15、2
【答案解析】
根据为焦点,得;又求得,从而得到离心率.
【题目详解】
为