分享
2023学年湖北省恩施州高中教育联盟高考压轴卷数学试卷(含解析).doc
下载文档

ID:16186

大小:2.02MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 湖北省 恩施 高中 教育 联盟 高考 压轴 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.集合,,则=( ) A. B. C. D. 2.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为( ) A. B. C. D. 3.正项等比数列中的、是函数的极值点,则( ) A. B.1 C. D.2 4.已知等差数列的前项和为,若,,则数列的公差为( ) A. B. C. D. 5.已知三棱锥中,为的中点,平面,,,则有下列四个结论:①若为的外心,则;②若为等边三角形,则;③当时,与平面所成的角的范围为;④当时,为平面内一动点,若OM∥平面,则在内轨迹的长度为1.其中正确的个数是( ). A.1 B.1 C.3 D.4 6.下列判断错误的是( ) A.若随机变量服从正态分布,则 B.已知直线平面,直线平面,则“”是“”的充分不必要条件 C.若随机变量服从二项分布: , 则 D.是的充分不必要条件 7.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是( ) A.1 B.-3 C.1或 D.-3或 8.若函数在处取得极值2,则( ) A.-3 B.3 C.-2 D.2 9.设正项等差数列的前项和为,且满足,则的最小值为 A.8 B.16 C.24 D.36 10.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( ) A. B. C. D. 11.已知函数,若所有点,所构成的平面区域面积为,则( ) A. B. C.1 D. 12.已知,,,若,则正数可以为( ) A.4 B.23 C.8 D.17 二、填空题:本题共4小题,每小题5分,共20分。 13.平面向量,,(R),且与的夹角等于与的夹角,则 . 14.在矩形中,,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_____. 15.若双曲线C:(,)的顶点到渐近线的距离为,则的最小值________. 16.在的二项展开式中,所有项的二项式系数之和为256,则_______,项的系数等于________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点. (Ⅰ)证明:平面; (Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积. 18.(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系. (1)求的直角坐标方程与点的直角坐标; (2)求证:. 19.(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线. (1)求曲线的方程; (2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值. 20.(12分)年,山东省高考将全面实行“选”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有人. (1)据此资料判断是否有的把握认为“喜欢物理与性别有关”; (2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中男女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望. ,其中. 21.(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,. (Ⅰ)若,求的值; (Ⅱ)证明:当取最小值时,与共线. 22.(10分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°. (1)求BC的长度; (2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小? 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 先化简集合A,B,结合并集计算方法,求解,即可. 【题目详解】 解得集合, 所以,故选C. 【答案点睛】 本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小. 2、D 【答案解析】 连接,,因为,所以为异面直线与所成的角(或补角), 不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案. 【题目详解】 连接,,因为,所以为异面直线与所成的角(或补角), 不妨设正方体的棱长为2,则,, 在等腰中,取的中点为,连接, 则,, 所以, 即:, 所以异面直线,所成角的余弦值为. 故选:D. 【答案点睛】 本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力. 3、B 【答案解析】 根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得. 【题目详解】 解:依题意、是函数的极值点,也就是的两个根 ∴ 又是正项等比数列,所以 ∴. 故选:B 【答案点睛】 本题主要考查了等比数列下标和性质以应用,属于中档题. 4、D 【答案解析】 根据等差数列公式直接计算得到答案. 【题目详解】 依题意,,故,故,故,故选:D. 【答案点睛】 本题考查了等差数列的计算,意在考查学生的计算能力. 5、C 【答案解析】 由线面垂直的性质,结合勾股定理可判断①正确; 反证法由线面垂直的判断和性质可判断②错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断③正确;由面面平行的性质定理可得线面平行,可得④正确. 【题目详解】 画出图形: 若为的外心,则, 平面,可得,即,①正确; 若为等边三角形,,又 可得平面,即,由可得 ,矛盾,②错误; 若,设与平面所成角为 可得, 设到平面的距离为 由可得 即有,当且仅当取等号. 可得的最大值为, 即的范围为,③正确; 取中点,的中点,连接 由中位线定理可得平面平面 可得在线段上,而,可得④正确; 所以正确的是:①③④ 故选:C 【答案点睛】 此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目. 6、D 【答案解析】 根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解. 【题目详解】 对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意; 对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意; 对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意; 对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立. 因而是的既不充分也不必要条件,故选项不正确,符合题意. 故选:D 【答案点睛】 本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题. 7、D 【答案解析】 由题得,解方程即得k的值. 【题目详解】 由题得,解方程即得k=-3或. 故答案为:D 【答案点睛】 (1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2) 点到直线的距离. 8、A 【答案解析】 对函数求导,可得,即可求出,进而可求出答案. 【题目详解】 因为,所以,则,解得,则. 故选:A. 【答案点睛】 本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题. 9、B 【答案解析】 方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B. 方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B. 10、C 【答案解析】 根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案. 【题目详解】 由题可知,程序框图的运行结果为31, 当时,; 当时,; 当时,; 当时,; 当时,. 此时输出. 故选:C. 【答案点睛】 本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题. 11、D 【答案解析】 依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可. 【题目详解】 解:,因为,, 所以,在上单调递增, 则在上的值域为, 因为所有点所构成的平面区域面积为, 所以, 解得, 故选:D. 【答案点睛】 本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题. 12、C 【答案解析】 首先根据对数函数的性质求出的取值范围,再代入验证即可; 【题目详解】 解:∵,∴当时,满足,∴实数可以为8. 故选:C 【答案点睛】 本题考查对数函数的性质的应用,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、2 【答案解析】 试题分析:,与的夹角等于与的夹角,所以 考点:向量的坐标运算与向量夹角 14、. 【答案解析】 计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解. 【题目详解】 由题意可知,, 所以可得面, 设外接圆的半径为, 由正弦定理可得,即,, 设三棱锥外接球的半径, 因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点, 则, 所以外接球的表面积为. 故答案为:. 【答案点睛】 本题考查三棱锥的外接球的应用,属于中档题. 15、 【答案解析】 根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解. 【题目详解】 由双曲线C:(,, 可得一条渐近线,一个顶点, 所以,解得, 则, 当且仅当时,取等号, 所以的最小值为. 故答案为: 【答案点睛】 本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题. 16、8 1 【答案解析】 根据二项式系数和的性质可得n,再利用展开式的通项公式求含项的系数即可. 【题目详解】 由于所有项的二项式系数之和为,, 故的二项展开式的通项公式为, 令,求得,可得含x项的系数等于, 故答案为:8;1. 【答案点睛】 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开