温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖北省
创新
发展
联盟
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()的图象的大致形状是( )
A. B. C. D.
2.已知为坐标原点,角的终边经过点且,则( )
A. B. C. D.
3.设复数z=,则|z|=( )
A. B. C. D.
4.将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为( )
A. B. C. D.
5.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是( )
A.﹣3∈A B.3B C.A∩B=B D.A∪B=B
6.下列选项中,说法正确的是( )
A.“”的否定是“”
B.若向量满足 ,则与的夹角为钝角
C.若,则
D.“”是“”的必要条件
7.已知复数满足,其中为虚数单位,则( ).
A. B. C. D.
8.若函数有两个极值点,则实数的取值范围是( )
A. B. C. D.
9.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是( )
A.③④ B.①③ C.②③ D.①②
10.已知a>b>0,c>1,则下列各式成立的是( )
A.sina>sinb B.ca>cb C.ac<bc D.
11.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )
A. B. C. D.
12.函数在区间上的大致图象如图所示,则可能是( )
A.
B.
C.
D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若变量,满足约束条件则的最大值是______.
14.的展开式中,的系数为_______(用数字作答).
15.在三棱锥P-ABC中,,,,三个侧面与底面所成的角均为,三棱锥的内切球的表面积为_________.
16.已知矩形 ABCD,AB= 4 ,BC =3,以 A, B 为焦点,且 过 C, D 两点的双曲线的离心率为____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.
(1)证明:平面;
(2)求点N到平面CDM的距离.
18.(12分)在中,、、的对应边分别为、、,已知,,.
(1)求;
(2)设为中点,求的长.
19.(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点作直线与曲线交于两点,点的坐标为,直线与轴分别交于两点,求证:线段的中点为定点,并求出面积的最大值.
20.(12分)已知椭圆:的两个焦点是,,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.
(1)求椭圆的标准方程;
(2)求证:为定值.
21.(12分)某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).
(1)应抽查男生与女生各多少人?
(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:
时间(小时)
[0,1]
(1,2]
(2,3]
(3,4]
(4,5]
(5,6]
频率
0.05
0.20
0.30
0.25
0.15
0.05
若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?
男生
女生
总计
每周平均体育锻炼时间不超过2小时
每周平均体育锻炼时间超过2小时
总计
附:K2.
P(K2≥k0)
0.100
0.050
0.010
0.005
2.706
3.841
6.635
7.879
22.(10分)如图,在正四棱锥中,,,为上的四等分点,即.
(1)证明:平面平面;
(2)求平面与平面所成锐二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
对x分类讨论,去掉绝对值,即可作出图象.
【题目详解】
故选C.
【答案点睛】
识图常用的方法
(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;
(2)定量计算法:通过定量的计算来分析解决问题;
(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.
2、C
【答案解析】
根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.
【题目详解】
根据题意,,解得,
所以,
所以,
所以.
故选:C.
【答案点睛】
本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.
3、D
【答案解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.
【题目详解】
解:z====﹣﹣,
则|z|====.
故选:D.
【答案点睛】
本题考查复数的基本概念和基本运算,属于基础题.
4、D
【答案解析】
根据函数图象的变换规律可得到解析式,然后将四个选项代入逐一判断即可.
【题目详解】
解:图象上每一点的横坐标变为原来的2倍,得到
再将图像向左平移个单位长度,得到函数的图象
,
故选:D
【答案点睛】
考查三角函数图象的变换规律以及其有关性质,基础题.
5、C
【答案解析】
试题分析:集合
考点:集合间的关系
6、D
【答案解析】
对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.
【题目详解】
选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;
选项B若向量满足,则与的夹角为钝角或平角,因此不正确.
选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;
选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.
故选:D.
【答案点睛】
本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.
7、A
【答案解析】
先化简求出,即可求得答案.
【题目详解】
因为,
所以
所以
故选:A
【答案点睛】
此题考查复数的基本运算,注意计算的准确度,属于简单题目.
8、A
【答案解析】
试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.
考点:利用导数研究函数极值点
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.
9、C
【答案解析】
①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.
【题目详解】
①当直线x、y、z位于正方体的三条共点棱时,不正确;
②因为垂直于同一平面的两直线平行,正确;
③因为垂直于同一直线的两平面平行,正确;
④如x、y、z位于正方体的三个共点侧面时, 不正确.
故选:C.
【答案点睛】
此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.
10、B
【答案解析】
根据函数单调性逐项判断即可
【题目详解】
对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;
对B,因为y=cx为增函数,且a>b,所以ca>cb,正确
对C,因为y=xc为增函数,故 ,错误;
对D, 因为在为减函数,故 ,错误
故选B.
【答案点睛】
本题考查了不等式的基本性质以及指数函数的单调性,属基础题.
11、B
【答案解析】
根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.
【题目详解】
.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.
故选:B
【答案点睛】
本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.
12、B
【答案解析】
根据特殊值及函数的单调性判断即可;
【题目详解】
解:当时,,无意义,故排除A;
又,则,故排除D;
对于C,当时,,所以不单调,故排除C;
故选:B
【答案点睛】
本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、9
【答案解析】
做出满足条件的可行域,根据图形,即可求出的最大值.
【题目详解】
做出不等式组表示的可行域,如图阴影部分所示,
目标函数过点时取得最大值,
联立,解得,即,
所以最大值为9.
故答案为:9.
【答案点睛】
本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.
14、60
【答案解析】
根据二项式定理展开式通项,即可求得的系数.
【题目详解】
因为,
所以,
则所求项的系数为.
故答案为:60
【答案点睛】
本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础题.
15、
【答案解析】
先确定顶点在底面的射影,再求出三棱锥的高以及各侧面三角形的高,利用