温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
云南省
昭通市
重点中学
2023
学年
下学
第五
调研
考试
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. “且”是“”的( )
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.既不充分也不必要条件
2.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是( )
A. B. C. D.
3.已知全集,集合,,则( )
A. B. C. D.
4.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )
A.截止到2015年中国累计装机容量达到峰值
B.10年来全球新增装机容量连年攀升
C.10年来中国新增装机容量平均超过
D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过
5.已知函数的图象如图所示,则可以为( )
A. B. C. D.
6.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )
A. B. C. D.
7.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是( )
A. B. C. D.
8.已知直线是曲线的切线,则( )
A.或1 B.或2 C.或 D.或1
9.设函数,则,的大致图象大致是的( )
A. B.
C. D.
10.已知向量,,,若,则( )
A. B. C. D.
11.已知双曲线C:1(a>0,b>0)的焦距为8,一条渐近线方程为,则C为( )
A. B.
C. D.
12.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.集合,,则_____.
14.在的展开式中,的系数为______用数字作答
15.定义在R上的函数满足:①对任意的,都有;②当时,,则函数的解析式可以是______________.
16.已知,,求____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某企业现有A.B两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.
图1:A设备生产的样本频率分布直方图
表1:B设备生产的样本频数分布表
质量指标值
频数
2
18
48
14
16
2
(1)请估计A.B设备生产的产品质量指标的平均值;
(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?
18.(12分)已知椭圆的焦距为2,且过点.
(1)求椭圆的方程;
(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,
(ⅰ)证明:平分线段(其中为坐标原点);
(ⅱ)当取最小值时,求点的坐标.
19.(12分)在底面为菱形的四棱柱中,平面.
(1)证明:平面;
(2)求二面角的正弦值.
20.(12分)已知,,函数的最小值为.
(1)求证:;
(2)若恒成立,求实数的最大值.
21.(12分)已知集合,.
(1)若,则;
(2)若,求实数的取值范围.
22.(10分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次 数为.
(1)求的分布列及其期望;
(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;
(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
画出“,,,所表示的平面区域,即可进行判断.
【题目详解】
如图,“且”表示的区域是如图所示的正方形,
记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,
显然是的真子集,所以答案是充分非必要条件,
故选:.
【答案点睛】
本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.
2、C
【答案解析】
利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.
【题目详解】
由题意,直角三角形的斜边长为,
利用等面积法,可得其内切圆的半径为,
所以向次三角形内投掷豆子,则落在其内切圆内的概率为.
故选:C.
【答案点睛】
本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.
3、B
【答案解析】
直接利用集合的基本运算求解即可.
【题目详解】
解:全集,集合,,
则,
故选:.
【答案点睛】
本题考查集合的基本运算,属于基础题.
4、D
【答案解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.
【题目详解】
年份
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
累计装机容量
158.1
197.2
237.8
282.9
318.7
370.5
434.3
489.2
542.7
594.1
新增装机容量
39.1
40.6
45.1
35.8
51.8
63.8
54.9
53.5
51.4
中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.
故选:D
【答案点睛】
本题考查条形图,考查基本分析求解能力,属基础题.
5、A
【答案解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.
【题目详解】
首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;
其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.
故选:A.
【答案点睛】
本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.
6、B
【答案解析】
将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.
【题目详解】
设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,
故选:B.
【答案点睛】
本题主要考查了枚举法求古典概型的方法,属于基础题型.
7、C
【答案解析】
分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.
详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:
,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C
点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.
8、D
【答案解析】
求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.
【题目详解】
直线的斜率为,
对于,令,解得,故切点为,代入直线方程得,解得或1.
故选:D
【答案点睛】
本小题主要考查根据切线方程求参数,属于基础题.
9、B
【答案解析】
采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.
【题目详解】
对于选项A:由题意知,函数的定义域为,其关于原点对称,
因为,
所以函数为奇函数,其图象关于原点对称,故选A排除;
对于选项D:因为,故选项D排除;
对于选项C:因为,故选项C排除;
故选:B
【答案点睛】
本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.
10、A
【答案解析】
根据向量坐标运算求得,由平行关系构造方程可求得结果.
【题目详解】
,
,解得:
故选:
【答案点睛】
本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.
11、A
【答案解析】
由题意求得c与的值,结合隐含条件列式求得a2,b2,则答案可求.
【题目详解】
由题意,2c=8,则c=4,
又,且a2+b2=c2,
解得a2=4,b2=12.
∴双曲线C的方程为.
故选:A.
【答案点睛】
本题考查双曲线的简单性质,属于基础题.
12、D
【答案解析】
过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.
【题目详解】
解:因为,,所以,即
过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,
则,0,,,,,,0,,,1,,
,,
,,,
设平面的法向量,
则,取,得,
同理可求平面的法向量,
平面的法向量,平面的法向量.
,,.
.
故选:D.
【答案点睛】
本题考查二面角的大小的判断,考查空间中线