温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
东北
育才
双语学校
2023
学年
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )
A. B. C. D.
2.已知函数的图象如图所示,则下列说法错误的是( )
A.函数在上单调递减
B.函数在上单调递增
C.函数的对称中心是
D.函数的对称轴是
3.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为
A.72 B.64 C.48 D.32
4.双曲线的离心率为,则其渐近线方程为
A. B. C. D.
5.一艘海轮从A处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )
A.6 海里 B.6海里 C.8海里 D.8海里
6.若关于的不等式有正整数解,则实数的最小值为( )
A. B. C. D.
7.设M是边BC上任意一点,N为AM的中点,若,则的值为( )
A.1 B. C. D.
8.已知定义在上函数的图象关于原点对称,且,若,则( )
A.0 B.1 C.673 D.674
9.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
10.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )
A.甲 B.乙 C.丙 D.丁
11.若,则“”的一个充分不必要条件是
A. B.
C.且 D.或
12.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.记为数列的前项和.若,则______.
14. “石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头.甲、乙两人玩一次该游戏,则甲不输的概率是______.
15.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______.
16.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数(),且只有一个零点.
(1)求实数a的值;
(2)若,且,证明:.
18.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cos θ,直线l的参数方程为 (t为参数,α为直线的倾斜角).
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C有唯一的公共点,求角α的大小.
19.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.
20.(12分)如图,在四棱柱中,底面是正方形,平面平面,,.过顶点,的平面与棱,分别交于,两点.
(Ⅰ)求证:;
(Ⅱ)求证:四边形是平行四边形;
(Ⅲ)若,试判断二面角的大小能否为?说明理由.
21.(12分)已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.
(1)求数列,的通项公式;
(2)求数列的前项和为;若对均满足,求整数的最大值;
(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.
22.(10分)如图,在直三棱柱中,分别是中点,且,.
求证:平面;
求点到平面的距离.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.
【题目详解】
设双曲线的左焦点为,连接,,,
设,则,,,
,根据对称性知四边形为矩形,
中:,即,解得;
中:,即,故,故.
故选:.
【答案点睛】
本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.
2、B
【答案解析】
根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.
【题目详解】
由图象可得,函数的周期,所以.
将点代入中,得,解得,由,可得,所以.
令,得,
故函数在上单调递减,
当时,函数在上单调递减,故A正确;
令,得,
故函数在上单调递增.
当时,函数在上单调递增,故B错误;
令,得,故函数的对称中心是,故C正确;
令,得,故函数的对称轴是,故D正确.
故选:B.
【答案点睛】
本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.
3、B
【答案解析】
由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
【题目详解】
由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,
所以几何体的体积为,故选B。
【答案点睛】
本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。
4、A
【答案解析】
分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.
详解:
因为渐近线方程为,所以渐近线方程为,选A.
点睛:已知双曲线方程求渐近线方程:.
5、A
【答案解析】
先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.
【题目详解】
由题意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,
∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.
在△ABC中,由正弦定理得,
即,∴.
故选:A.
【答案点睛】
本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.
6、A
【答案解析】
根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值.
【题目详解】
因为不等式有正整数解,所以,于是转化为, 显然不是不等式的解,当时,,所以可变形为.
令,则,
∴函数在上单调递增,在上单调递减,而,所以
当时,,故,解得.
故选:A.
【答案点睛】
本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.
7、B
【答案解析】
设,通过,再利用向量的加减运算可得,结合条件即可得解.
【题目详解】
设,
则有.
又,
所以,有.
故选B.
【答案点睛】
本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.
8、B
【答案解析】
由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.
【题目详解】
因为为奇函数,故;
因为,故,
可知函数的周期为3;
在中,令,故,
故函数在一个周期内的函数值和为0,
故.
故选:B.
【答案点睛】
本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.
9、C
【答案解析】
根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可.
【题目详解】
点不在直线、上,
若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,
若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:
若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立
则“过点可以作无数个平面,使得直线、都与这些平面平行”是“直线、互相平行”的充要条件,
故选:.
【答案点睛】
本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.
10、C
【答案解析】
分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.
【题目详解】
①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;
②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;
③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;
④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.
综上所述,年纪最大的是丙
故选:C.
【答案点睛】
本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.
11、C
【答案解析】
,
∴,当且仅当 时取等号.
故“且 ”是“”的充分不必要条件.选C.
12、D
【答案解析】
过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.
【题目详解】
如下图所示,过点作,设该双曲线的右焦点为,连接.
,.
, ,
,为的中点,,,,
,
由双曲线的定义得,即,
因此,该