温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
河南省
灵宝市
实验
高中
下第
一次
测试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a>b>0,c>1,则下列各式成立的是( )
A.sina>sinb B.ca>cb C.ac<bc D.
2.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为( )
A.1 B.2
C.3 D.4
3.已知函数,则函数的图象大致为( )
A. B.
C. D.
4.已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为( )
A. B. C. D.
5.设、分别是定义在上的奇函数和偶函数,且,则( )
A. B.0 C.1 D.3
6.已知直线过圆的圆心,则的最小值为( )
A.1 B.2 C.3 D.4
7.已知函数,若函数有三个零点,则实数的取值范围是( )
A. B. C. D.
8.某几何体的三视图如图所示,则该几何体的最长棱的长为( )
A. B. C. D.
9.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为( )
A.3 B.3.4 C.3.8 D.4
10.设,其中a,b是实数,则( )
A.1 B.2 C. D.
11.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( )
A.3 B. C.4 D.
12.( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知点是双曲线渐近线上的一点,则双曲线的离心率为_______
14.(5分)已知曲线的方程为,其图象经过点,则曲线在点处的切线方程是____________.
15.根据如图所示的伪代码,输出的值为______.
16.抛物线的焦点坐标为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图所示,直角梯形中,,,,四边形为矩形,.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.
18.(12分)已知函数.
(1)当时,试求曲线在点处的切线;
(2)试讨论函数的单调区间.
19.(12分)如图,在四棱锥中,底面为菱形,为正三角形,平面平面分别是的中点.
(1)证明:平面
(2)若,求二面角的余弦值.
20.(12分)已知函数为实数)的图像在点处的切线方程为.
(1)求实数的值及函数的单调区间;
(2)设函数,证明时, .
21.(12分)已知等差数列满足,.
(l)求等差数列的通项公式;
(2)设,求数列的前项和.
22.(10分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的普通方程;
(2)若P,Q分别为曲线,上的动点,求的最大值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据函数单调性逐项判断即可
【题目详解】
对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;
对B,因为y=cx为增函数,且a>b,所以ca>cb,正确
对C,因为y=xc为增函数,故 ,错误;
对D, 因为在为减函数,故 ,错误
故选B.
【答案点睛】
本题考查了不等式的基本性质以及指数函数的单调性,属基础题.
2、D
【答案解析】
可以是共4个,选D.
3、A
【答案解析】
用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.
【题目详解】
设,由于,排除B选项;由于,所以,排除C选项;由于当时,,排除D选项.故A选项正确.
故选:A
【答案点睛】
本题考查了函数图像的性质,属于中档题.
4、B
【答案解析】
根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.
【题目详解】
由题意,设点在第一象限,双曲线的一条渐近线方程为,
所以,,
又以为直径的圆经过点,则,即,解得,,
所以,,即,即,
所以,双曲线的离心率为.
故选:B.
【答案点睛】
本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.
5、C
【答案解析】
先根据奇偶性,求出的解析式,令,即可求出。
【题目详解】
因为、分别是定义在上的奇函数和偶函数,,用替换,得 ,
化简得,即
令,所以,故选C。
【答案点睛】
本题主要考查函数性质奇偶性的应用。
6、D
【答案解析】
圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.
【题目详解】
圆的圆心为,
由题意可得,即,,,
则,当且仅当且即时取等号,
故选:.
【答案点睛】
本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.
7、B
【答案解析】
根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.
【题目详解】
根据题意,画出函数图像如下图所示:
函数的零点,即.
由图像可知,,
所以是的一个零点,
当时,,若,
则,即,所以,解得;
当时,,
则,且
若在时有一个零点,则,
综上可得,
故选:B.
【答案点睛】
本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.
8、D
【答案解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.
【题目详解】
根据三视图可知,几何体是一个四棱锥,如图所示:
由三视图知: ,
所以,
所以,
所以该几何体的最长棱的长为
故选:D
【答案点睛】
本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.
9、D
【答案解析】
根据三视图即可求得几何体表面积,即可解得未知数.
【题目详解】
由图可知,该几何体是由一个长宽高分别为和
一个底面半径为,高为的圆柱组合而成.
该几何体的表面积为
,
解得,
故选:D.
【答案点睛】
本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.
10、D
【答案解析】
根据复数相等,可得,然后根据复数模的计算,可得结果.
【题目详解】
由题可知:,
即,所以
则
故选:D
【答案点睛】
本题考查复数模的计算,考验计算,属基础题.
11、B
【答案解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.
【题目详解】
由题意可知:,
所以,,
所以,所以,
又因为,所以,
所以.
故选:B.
【答案点睛】
本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.
12、B
【答案解析】
利用复数代数形式的乘除运算化简得答案.
【题目详解】
.
故选B.
【答案点睛】
本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先表示出渐近线,再代入点,求出,则离心率易求.
【题目详解】
解:的渐近线是
因为在渐近线上,所以
,
故答案为:
【答案点睛】
考查双曲线的离心率的求法,是基础题.
14、
【答案解析】
依题意,将点的坐标代入曲线的方程中,解得.由,得,则曲线在点处切线的斜率,所以在点处的切线方程是,即.
15、7
【答案解析】
表示初值S=1,i=1,分三次循环计算得S=10>0,输出i=7.
【题目详解】
S=1,i=1
第一次循环:S=1+1=2,i=1+2=3;
第二次循环:S=2+3=5,i=3+2=5;
第三次循环:S=5+5=10,i=5+2=7;
S=10>9,循环结束,输出:i=7.
故答案为:7
【答案点睛】
本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.
16、
【答案解析】
变换得到,计算焦点得到答案.
【题目详解】
抛物线的标准方程为,,所以焦点坐标为.
故答案为:
【答案点睛】
本题考查了抛物线的焦点坐标,属于简单题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2)存在,长
【答案解析】
(1)先证面,又因为面,所以平面平面.
(2)根据题意建立空间直角坐标系. 列出各点的坐标表示,设,则可得出
向量,求出平面的法向量为,利用直线与平面所成角的正弦公式列方程求出或,从而求出线段的长.
【题目详解】
解:(1)证明:因为四边形为矩形,
∴.
∵∴
∴∴面
∴面
又∵面
∴平面平面
(2)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系.
如图所示:则,,,,,
设,;
∴,,
设平面的法向量为,
∴,不防设.
∴,
化简得,解得或;
当时,,∴;
当时,,∴;
综上存在这样的点,线段的长.
【答案点睛】
本题考查平面与平面垂直的判定定理的应用,考查利用线面所成角求参数问题,是几何综合题,考查空间想象力以及计算能力.
18、(1);(2)见解析
【答案解析】
(1)对函数进行求导,可以求出曲线在点处的切线,利用直线的斜截式方程可以求出曲线的切线方程;
(2)对函数进行求导,对实数进行分类讨论,可以求出函数的单调区间.
【题目详解】
(1)当时,函数定义域为,,
所以切线方程为;
(2)
当时,函数定义域为,在上单调递增
当时,恒成立,函数定义域为,又在单调递增,单调递减,单调递增
当时,函数定义域为,在单调递增,单调递减,单调递增
当时,设的两个根为且,由韦达定理易知两根均为正根,且,所以函数的定义域为,又对称轴,且,
在单调递增,单调递减,单调递增
【答案点睛】
本题考查了曲线切线方程的求法,考查了利用函数的导数讨论函数的单调性问题,考查了分类思想.
19、(1)详见解析;(2).
【答案解析】
(1)连接,由菱形的性质以及中位线,得,由平面平面,且交线,得平面,故而,最后由线面垂直的判定得结论.
(2)以为原点建平面直角坐标系,求出平面平与平面的法向量
,,最后求得二面角的余弦值为.
【题目详解】
解:(1)连结
∵ ,且是的中点,
∴
∵平面平面,
平面平面,
∴平面.
∵平面