分享
2023届沙湾县第一中学高三3月份模拟考试数学试题(含解析).doc
下载文档

ID:15717

大小:1.90MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 沙湾县 第一 中学 月份 模拟考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( ) A., B., C., D., 2.已知为虚数单位,复数,则其共轭复数( ) A. B. C. D. 3.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”( 注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是( ) A. B. C. D. 4.若集合,,则( ) A. B. C. D. 5.设为自然对数的底数,函数,若,则( ) A. B. C. D. 6.设为锐角,若,则的值为( ) A. B. C. D. 7.已知函数,若有2个零点,则实数的取值范围为( ) A. B. C. D. 8.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是( ) A. B. C. D. 9.复数为纯虚数,则( ) A.i B.﹣2i C.2i D.﹣i 10.下列函数中,值域为R且为奇函数的是( ) A. B. C. D. 11.已知实数,则的大小关系是(  ) A. B. C. D. 12.关于的不等式的解集是,则关于的不等式的解集是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为________. 14.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为__________. 15.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答). 16.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB和其所对弦AB围成的图形,若弧田的弧AB长为4π,弧所在的圆的半径为6,则弧田的弦AB长是__________,弧田的面积是__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (1)时,求不等式解集; (2)若的解集包含于,求a的取值范围. 18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1)写出的普通方程和的直角坐标方程; (2)设点在上,点在上,求的最小值以及此时的直角坐标. 19.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由. 设正数等比数列的前项和为,是等差数列,__________,,,,是否存在正整数,使得成立? 20.(12分)在三棱柱中,,,,且. (1)求证:平面平面; (2)设二面角的大小为,求的值. 21.(12分)在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系. (1)求曲线C的极坐标方程; (2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程. 22.(10分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为. (1)求曲线的极坐标方程和曲线的直角坐标方程; (2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项. 【题目详解】 表示取出的为一个白球,所以.表示取出一个黑球,,所以. 表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,. 故选:C 【答案点睛】 本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题. 2、B 【答案解析】 先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可. 【题目详解】 由,所以其共轭复数. 故选:B. 【答案点睛】 本题考查复数的乘法运算以及共轭复数的概念,难度较易. 3、B 【答案解析】 先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率. 【题目详解】 不超过的素数有:、、、、、, 在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况, 其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况, 因此,所求事件的概率为. 故选:B. 【答案点睛】 本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题. 4、A 【答案解析】 用转化的思想求出中不等式的解集,再利用并集的定义求解即可. 【题目详解】 解:由集合,解得, 则 故选:. 【答案点睛】 本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题. 5、D 【答案解析】 利用与的关系,求得的值. 【题目详解】 依题意, 所以 故选:D 【答案点睛】 本小题主要考查函数值的计算,属于基础题. 6、D 【答案解析】 用诱导公式和二倍角公式计算. 【题目详解】 . 故选:D. 【答案点睛】 本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系. 7、C 【答案解析】 令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案. 【题目详解】 令, 可得, 要使得有两个实数解,即和有两个交点, , 令, 可得, 当时,,函数在上单调递增; 当时,,函数在上单调递减. 当时,, 若直线和有两个交点,则. 实数的取值范围是. 故选:C. 【答案点睛】 本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题. 8、D 【答案解析】 首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项. 【题目详解】 经判断此循环为“直到型”结构,判断框为跳出循环的语句, 第一次循环:; 第二次循环:; 第三次循环:, 此时退出循环,根据判断框内为跳出循环的语句,,故选D. 【答案点睛】 题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 9、B 【答案解析】 复数为纯虚数,则实部为0,虚部不为0,求出,即得. 【题目详解】 ∵为纯虚数, ∴,解得. . 故选:. 【答案点睛】 本题考查复数的分类,属于基础题. 10、C 【答案解析】 依次判断函数的值域和奇偶性得到答案. 【题目详解】 A. ,值域为,非奇非偶函数,排除; B. ,值域为,奇函数,排除; C. ,值域为,奇函数,满足; D. ,值域为,非奇非偶函数,排除; 故选:. 【答案点睛】 本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用. 11、B 【答案解析】 根据,利用指数函数对数函数的单调性即可得出. 【题目详解】 解:∵, ∴,,. ∴. 故选:B. 【答案点睛】 本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题. 12、A 【答案解析】 由的解集,可知及,进而可求出方程的解,从而可求出的解集. 【题目详解】 由的解集为,可知且, 令,解得,, 因为,所以的解集为, 故选:A. 【答案点睛】 本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 对新加入的学生所扮演的角色进行分类讨论,分析各种情况下个学生所扮演的角色的分组,综合可得出结论. 【题目详解】 依题意,名学生分成组,则一定是个人组和个人组. ①若新加入的学生是士兵,则可以将这个人分组如下;名士兵;士兵、排长、连长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令; ②若新加入的学生是排长,则可以将这个人分组如下:名士兵;连长、营长、团长各名;旅长、师长、军长各名;名司令;名排长.所以新加入的学生可以是排长,由对称性可知也可以是军长; ③若新加入的学生是连长,则可以将这个人分组如下:名士兵;士兵、排长、连长各名;连长、营长、团长各名;旅长、师长、军长各名;名司令.所以新加入的学生可以是连长,由对称性可知也可以是师长; ④若新加入的学生是营长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是营长,由对称性可知也可以是旅长; ⑤若新加入的学生是团长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;旅长、师长、军长各名;名司令;名团长.所以新加入的学生可以是团长. 综上所述,新加入学生可以扮演种角色. 故答案为:. 【答案点睛】 本题考查分类计数原理的应用,解答的关键就是对新加入的学生所扮演的角色进行分类讨论,属于中等题. 14、 【答案解析】 基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,由此能求出抽得的第一张卡片上的数不小于第二张卡片上的数的概率. 【题目详解】 从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张, 基

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开