分享
2023届湖北省七市教科研协作体高三下学期联考数学试题(含解析).doc
下载文档

ID:15706

大小:2.13MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 湖北省 教科研 协作 体高三 下学 联考 数学试题 解析
2023学年高考数学模拟测试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合,则的值域为(  ) A. B. C. D. 2.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( ) A.16 B.17 C.18 D.19 3.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( ) A. B. C. D. 4.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( ) A.圆,但要去掉两个点 B.椭圆,但要去掉两个点 C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点 5.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( ) A.多1斤 B.少1斤 C.多斤 D.少斤 6.已知奇函数是上的减函数,若满足不等式组,则的最小值为( ) A.-4 B.-2 C.0 D.4 7.已知集合,,则=( ) A. B. C. D. 8.已知数列,,,…,是首项为8,公比为得等比数列,则等于( ) A.64 B.32 C.2 D.4 9.某几何体的三视图如图所示,则该几何体的体积为( ) A. B. C. D. 10.已知且,函数,若,则( ) A.2 B. C. D. 11.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为( ) A. B. C. D. 12.已知函数在上可导且恒成立,则下列不等式中一定成立的是( ) A.、 B.、 C.、 D.、 二、填空题:本题共4小题,每小题5分,共20分。 13.函数在的零点个数为_________. 14.已知 ,则_____. 15. “直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”). 16.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________. “我身边的榜样”评选选票 候选人 符号 注: 1.同意画“○”,不同意画“×”. 2.每张选票“○”的个数不超过2时才为有效票. 甲 乙 丙 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛. (1)求选出的4名选手中恰好有一名女教师的选派方法数; (2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望. 18.(12分)已知函数. (1)证明:函数在上存在唯一的零点; (2)若函数在区间上的最小值为1,求的值. 19.(12分)已知椭圆的离心率为,且过点,点在第一象限,为左顶点,为下顶点,交轴于点,交轴于点. (1)求椭圆的标准方程; (2)若,求点的坐标. 20.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,. (1)求椭圆的标准方程; (2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值. 21.(12分)已知函数. (1)当时,求的单调区间; (2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值. 22.(10分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点. (Ⅰ)若线段的中点坐标为,求直线的方程; (Ⅱ)若直线过点,点满足(,分别为直线,的斜率),求的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 先求出集合,化简=,令,得由二次函数的性质即可得值域. 【题目详解】 由,得 ,,令, ,,所以得 , 在 上递增,在上递减, ,所以,即 的值域为 故选A 【答案点睛】 本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题 2、B 【答案解析】 由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可. 【题目详解】 解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数. 若输出 ,则不符合题意,排除; 若输出,则,符合题意. 故选:B. 【答案点睛】 本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答. 3、D 【答案解析】 将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数; 当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解; 【题目详解】 函数在内都有两个不同的零点, 等价于方程在内都有两个不同的根. ,所以当时,,是增函数; 当时,,是减函数.因此. 设,, 若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解. 设其解为,当时,在上是增函数; 当时,在上是减函数. 因为,方程在内有两个不同的根, 所以,且.由,即,解得. 由,即,所以. 因为,所以,代入,得. 设,,所以在上是增函数, 而,由可得,得. 由在上是增函数,得. 综上所述, 故选:D. 【答案点睛】 本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题 4、A 【答案解析】 根据题意可得,即知C在以AB为直径的圆上. 【题目详解】 ,, , 又,, 平面,又平面 , 故在以为直径的圆上, 又是内异于的动点, 所以的轨迹是圆,但要去掉两个点A,B 故选:A 【答案点睛】 本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题. 5、C 【答案解析】 设这十等人所得黄金的重量从大到小依次组成等差数列 则 由等差数列的性质得 , 故选C 6、B 【答案解析】 根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【题目详解】 奇函数是上的减函数,则,且,画出可行域和目标函数, ,即,表示直线与轴截距的相反数, 根据平移得到:当直线过点,即时,有最小值为. 故选:. 【答案点睛】 本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键. 7、C 【答案解析】 计算,,再计算交集得到答案. 【题目详解】 ,,故. 故选:. 【答案点睛】 本题考查了交集运算,意在考查学生的计算能力. 8、A 【答案解析】 根据题意依次计算得到答案. 【题目详解】 根据题意知:,,故,,. 故选:. 【答案点睛】 本题考查了数列值的计算,意在考查学生的计算能力. 9、D 【答案解析】 结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可. 【题目详解】 由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积. 故选:D. 【答案点睛】 本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题. 10、C 【答案解析】 根据分段函数的解析式,知当时,且,由于,则,即可求出. 【题目详解】 由题意知: 当时,且 由于,则可知:, 则, ∴,则, 则. 即. 故选:C. 【答案点睛】 本题考查分段函数的应用,由分段函数解析式求自变量. 11、B 【答案解析】 设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值. 【题目详解】 设棱长为1,,, 由题意得:,, , 又 即异面直线与所成角的余弦值为: 本题正确选项: 【答案点睛】 本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题. 12、A 【答案解析】 设,利用导数和题设条件,得到,得出函数在R上单调递增, 得到,进而变形即可求解. 【题目详解】 由题意,设,则, 又由,所以,即函数在R上单调递增, 则,即, 变形可得. 故选:A. 【答案点睛】 本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题. 二、填空题:本题共4小题,每小题5分,共20分。 13、1 【答案解析】 本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可. 【题目详解】 问题函数在的零点个数,可以转化为曲线交点个数问题. 在同一直角坐标系内,画出函数的图象,如下图所示: 由图象可知:当时,两个函数只有一个交点. 故答案为:1 【答案点睛】 本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想. 14、 【答案解析】 对原方程两边求导,然后令求得表达式的值. 【题目详解】 对等式两边求导,得,令,则. 【答案点睛】 本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题. 15、必要不充分 【答案解析】 先求解直线l1与直线l2平行的等价条件,然后进行判断. 【题目详解】 “直线l1:与直线l2:平行”等价于a=±2, 故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件. 故答案为:必要不充分. 【答案点睛】 本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养. 16、91 【答案解析】 设共有选票张,且票对应张数为,由此可构造不等式组化简得到,由投票有效率越高越小,可知,由此计算可得投票有效率. 【题目详解】 不妨设共有选票张,投票的有,票的有,票的有,则由题意可得: ,化简得:,即, 投票有效率越高,越小,则,, 故本次投票的有效率(有效票数与总票数的比值)最高可能为. 故答案为:. 【答案点睛】 本题考查线性规划的实际应用问题,关键是能够根据已知条件构造出变

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开