温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖北省
教科研
协作
体高三
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,则的值域为( )
A. B. C. D.
2.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )
A.16 B.17 C.18 D.19
3.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )
A. B. C. D.
4.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( )
A.圆,但要去掉两个点 B.椭圆,但要去掉两个点
C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点
5.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )
A.多1斤 B.少1斤 C.多斤 D.少斤
6.已知奇函数是上的减函数,若满足不等式组,则的最小值为( )
A.-4 B.-2 C.0 D.4
7.已知集合,,则=( )
A. B. C. D.
8.已知数列,,,…,是首项为8,公比为得等比数列,则等于( )
A.64 B.32 C.2 D.4
9.某几何体的三视图如图所示,则该几何体的体积为( )
A. B. C. D.
10.已知且,函数,若,则( )
A.2 B. C. D.
11.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为( )
A. B. C. D.
12.已知函数在上可导且恒成立,则下列不等式中一定成立的是( )
A.、
B.、
C.、
D.、
二、填空题:本题共4小题,每小题5分,共20分。
13.函数在的零点个数为_________.
14.已知 ,则_____.
15. “直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).
16.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________.
“我身边的榜样”评选选票
候选人
符号
注:
1.同意画“○”,不同意画“×”.
2.每张选票“○”的个数不超过2时才为有效票.
甲
乙
丙
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
18.(12分)已知函数.
(1)证明:函数在上存在唯一的零点;
(2)若函数在区间上的最小值为1,求的值.
19.(12分)已知椭圆的离心率为,且过点,点在第一象限,为左顶点,为下顶点,交轴于点,交轴于点.
(1)求椭圆的标准方程;
(2)若,求点的坐标.
20.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.
(1)求椭圆的标准方程;
(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.
21.(12分)已知函数.
(1)当时,求的单调区间;
(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.
22.(10分)已知椭圆:,不与坐标轴垂直的直线与椭圆交于,两点.
(Ⅰ)若线段的中点坐标为,求直线的方程;
(Ⅱ)若直线过点,点满足(,分别为直线,的斜率),求的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
先求出集合,化简=,令,得由二次函数的性质即可得值域.
【题目详解】
由,得 ,,令, ,,所以得 , 在 上递增,在上递减, ,所以,即 的值域为
故选A
【答案点睛】
本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题
2、B
【答案解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.
【题目详解】
解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.
若输出 ,则不符合题意,排除;
若输出,则,符合题意.
故选:B.
【答案点睛】
本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.
3、D
【答案解析】
将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;
当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;
【题目详解】
函数在内都有两个不同的零点,
等价于方程在内都有两个不同的根.
,所以当时,,是增函数;
当时,,是减函数.因此.
设,,
若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.
设其解为,当时,在上是增函数;
当时,在上是减函数.
因为,方程在内有两个不同的根,
所以,且.由,即,解得.
由,即,所以.
因为,所以,代入,得.
设,,所以在上是增函数,
而,由可得,得.
由在上是增函数,得.
综上所述,
故选:D.
【答案点睛】
本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题
4、A
【答案解析】
根据题意可得,即知C在以AB为直径的圆上.
【题目详解】
,,
,
又,,
平面,又平面
,
故在以为直径的圆上,
又是内异于的动点,
所以的轨迹是圆,但要去掉两个点A,B
故选:A
【答案点睛】
本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.
5、C
【答案解析】
设这十等人所得黄金的重量从大到小依次组成等差数列 则 由等差数列的性质得 ,
故选C
6、B
【答案解析】
根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.
【题目详解】
奇函数是上的减函数,则,且,画出可行域和目标函数,
,即,表示直线与轴截距的相反数,
根据平移得到:当直线过点,即时,有最小值为.
故选:.
【答案点睛】
本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.
7、C
【答案解析】
计算,,再计算交集得到答案.
【题目详解】
,,故.
故选:.
【答案点睛】
本题考查了交集运算,意在考查学生的计算能力.
8、A
【答案解析】
根据题意依次计算得到答案.
【题目详解】
根据题意知:,,故,,.
故选:.
【答案点睛】
本题考查了数列值的计算,意在考查学生的计算能力.
9、D
【答案解析】
结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.
【题目详解】
由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.
故选:D.
【答案点睛】
本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.
10、C
【答案解析】
根据分段函数的解析式,知当时,且,由于,则,即可求出.
【题目详解】
由题意知:
当时,且
由于,则可知:,
则,
∴,则,
则.
即.
故选:C.
【答案点睛】
本题考查分段函数的应用,由分段函数解析式求自变量.
11、B
【答案解析】
设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.
【题目详解】
设棱长为1,,,
由题意得:,,
,
又
即异面直线与所成角的余弦值为:
本题正确选项:
【答案点睛】
本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.
12、A
【答案解析】
设,利用导数和题设条件,得到,得出函数在R上单调递增,
得到,进而变形即可求解.
【题目详解】
由题意,设,则,
又由,所以,即函数在R上单调递增,
则,即,
变形可得.
故选:A.
【答案点睛】
本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.
【题目详解】
问题函数在的零点个数,可以转化为曲线交点个数问题.
在同一直角坐标系内,画出函数的图象,如下图所示:
由图象可知:当时,两个函数只有一个交点.
故答案为:1
【答案点睛】
本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.
14、
【答案解析】
对原方程两边求导,然后令求得表达式的值.
【题目详解】
对等式两边求导,得,令,则.
【答案点睛】
本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.
15、必要不充分
【答案解析】
先求解直线l1与直线l2平行的等价条件,然后进行判断.
【题目详解】
“直线l1:与直线l2:平行”等价于a=±2,
故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件.
故答案为:必要不充分.
【答案点睛】
本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.
16、91
【答案解析】
设共有选票张,且票对应张数为,由此可构造不等式组化简得到,由投票有效率越高越小,可知,由此计算可得投票有效率.
【题目详解】
不妨设共有选票张,投票的有,票的有,票的有,则由题意可得:
,化简得:,即,
投票有效率越高,越小,则,,
故本次投票的有效率(有效票数与总票数的比值)最高可能为.
故答案为:.
【答案点睛】
本题考查线性规划的实际应用问题,关键是能够根据已知条件构造出变