温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
湖北省
孝感市
重点中学
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( )
A. B.
C. D.
2.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是( )
A. B.
C. D.
3.已知纯虚数满足,其中为虚数单位,则实数等于( )
A. B.1 C. D.2
4.用一个平面去截正方体,则截面不可能是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
5.若实数满足不等式组则的最小值等于( )
A. B. C. D.
6.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=( )
A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}
7.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为( )
A. B. C. D.
8.在菱形中,,,,分别为,的中点,则( )
A. B. C.5 D.
9.已知复数满足,则( )
A. B. C. D.
10.如图是一个几何体的三视图,则这个几何体的体积为( )
A. B. C. D.
11.在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为( )
A. B. C. D.
12.执行如图所示的程序框图若输入,则输出的的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设满足约束条件,则目标函数的最小值为_.
14.函数f(x)=x2﹣xlnx的图象在x=1处的切线方程为_____.
15.已知 ,则_____.
16.在中,角,,的对边分别是,,,若,,则的面积的最大值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列,其前项和为,满足,,其中,,,.
⑴若,,(),求证:数列是等比数列;
⑵若数列是等比数列,求,的值;
⑶若,且,求证:数列是等差数列.
18.(12分)已知函数的图象在处的切线方程是.
(1)求的值;
(2)若函数,讨论的单调性与极值;
(3)证明:.
19.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.
20.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;
(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.
附表及公式:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,
21.(12分)已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
22.(10分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.
(1)求圆的极坐标方程;
(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.
【题目详解】
设椭圆的长半轴长为,双曲线的长半轴长为 ,
由椭圆和双曲线的定义得: ,
解得,设,
在中,由余弦定理得: ,
化简得,
即.
故选:A
【答案点睛】
本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.
2、A
【答案解析】
根据y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得ω的取值范围.
【题目详解】
函数的图象先向右平移个单位长度,
可得的图象,
再将图象上每个点的横坐标变为原来的倍(纵坐标不变),
得到函数的图象,
∴周期,
若函数在上没有零点,
∴ ,
∴ ,
,解得,
又,解得,
当k=0时,解,
当k=-1时,,可得,
.
故答案为:A.
【答案点睛】
本题考查函数y=Acos(ωx+φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.
3、B
【答案解析】
先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.
【题目详解】
因为,所以,
又因为是纯虚数,所以,所以.
故选:B.
【答案点睛】
本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.
4、C
【答案解析】
试题分析:画出截面图形如图
显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C.
考点:平面的基本性质及推论.
5、A
【答案解析】
首先画出可行域,利用目标函数的几何意义求的最小值.
【题目详解】
解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)
由得,
由得,平移,
易知过点时直线在上截距最小,
所以.
故选:A.
【答案点睛】
本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.
6、B
【答案解析】
按补集、交集定义,即可求解.
【题目详解】
={1,3,5,6},={1,2,5,6},
所以={1,5,6}.
故选:B.
【答案点睛】
本题考查集合间的运算,属于基础题.
7、D
【答案解析】
使用不同方法用表示出,结合平面向量的基本定理列出方程解出.
【题目详解】
解:,
又
解得,所以
故选:D
【答案点睛】
本题考查了平面向量的基本定理及其意义,属于基础题.
8、B
【答案解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.
【题目详解】
设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,
则,,,,,
所以.
故选:B.
【答案点睛】
本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.
9、A
【答案解析】
根据复数的运算法则,可得,然后利用复数模的概念,可得结果.
【题目详解】
由题可知:
由,所以
所以
故选:A
【答案点睛】
本题主要考查复数的运算,考验计算,属基础题.
10、A
【答案解析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.
【题目详解】
由三视图还原原几何体如图,
该几何体为组合体,上半部分为半球,下半部分为圆柱,
半球的半径为1,圆柱的底面半径为1,高为1.
则几何体的体积为.
故选:.
【答案点睛】
本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.
11、B
【答案解析】
作出图形,设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线的性质可求得的值.
【题目详解】
如下图所示:
设平面分别交、于点、,连接、、,取的中点,连接、,连接交于点,
四边形为正方形,、分别为、的中点,则且,
四边形为平行四边形,且,
且,且,则四边形为平行四边形,
,平面,则存在直线平面,使得,
若平面,则平面,又平面,则平面,
此时,平面为平面,直线不可能与平面平行,
所以,平面,,平面,
平面,平面平面,,
,所以,四边形为平行四边形,可得,
为的中点,同理可证为的中点,,,因此,.
故选:B.
【答案点睛】
本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.
12、C
【答案解析】
由程序语言依次计算,直到时输出即可
【题目详解】
程序的运行过程为
当n=2时,时,,此时输出.
故选:C
【答案点睛】
本题考查由程序框图计算输出结果,属于基础题
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值.
【题目详解】
由满足约束条件,画出可行域如图所示阴影部分:
将目标函数,转化为,
平移直线,找到直线在轴上截距最小时的点
此时,目标函数 取得最小值,最小值为
故答案为:-1
【答案点睛】
本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.
14、x﹣y=0.
【答案解析】
先将x=1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利用点斜式写出切线方程.
【题目详解】
由题意得.
故切线方程为y﹣1=x﹣1,即x﹣y=0.
故答案为:x﹣y=0.
【答案点睛】
本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题.
15、
【答案解析】
对原方程两边求导,然后令求得表达式的值.
【题目详解】
对等式两边求导,得,令,则.
【答案点睛】
本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.
16、
【答案解析】
化简得到,,根据余弦定理和均