温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
夏津县
实验
第一
学期
九年级
期中
数学试题
答案
2023学年度第一学期九年级期中教学质量检测
数 学 试 题
一.选择题
1.有4个命题:①直径相等的两个圆是等圆; ②长度相等的两条弧是等弧;③圆中最大的弧是过圆心的弧;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )
A.①③ B.①③④ C.①④ D.①
2..如图,点I为△ABC的内心,点O为△ABC的外心,∠O=140°,那么∠°°°°
3..如图,等腰直角三角形AOB的面积为S1,以点O为圆心,OA为半径的弧与以AB为直径的半圆围成的图形的面积为S2,那么S1与S2的关系是( )
A. S1>S2 B. S1<S2 C. S1=S21≥S2
4..如果正多边形的一个外角等于60°,那么它的边数为( )
A. 4 B. 5 C. 6 D. 7
5.如图,⊙O的直径AB与弦CD的延长线交于点E,假设DE=OB, ∠AOC=84°,那么∠E等于( )
A.42 °°°°
6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,那么⊙O的直径是( )
A.2cm B.4cm C.6cm D.8cm
第6题 第7题 第10题
7. 如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,那么图中阴影局部的面积为( )
A. B. C. D.
8.⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,假设半径为4的⊙C与⊙O1、⊙O2都相切,那么满足条件的⊙C有( )
A.2个 B.4个 C.5个 D.6个
9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数根,那么直线与⊙O的位置关系为( )
A.相离或相切 B.相切或相交 C.相离或相交 D.无法确定
10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,那么顶点A运动到点A2的位置时,点A所经过的路线为( )
A. B. C. D.
11.(成都)如图,小红同学要用纸板制作一个高4cm,底面周长是6ππcm2πcm2πcm2πcm2
第11题 第12题
12. 如图,扇形OAB是一个圆锥的侧面展开图,假设小正方形方格的边长为1,那么这个圆锥的底面半径为( )
A. B. C. D.
二。填空题
1.某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如以下图放置并包装侧面,那么需________________的包装膜(不计接缝,取3).
第1题 第2题
2.如图,在“世界杯〞足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.
3.如果圆的内接正六边形的边长为6cm,那么其外接圆的半径为___________.
4.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),那么该圆弧所在圆的圆心坐标为_____________.
三。解答题
1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)假设⊙O半径为5,∠BAC=60°,求DE的长.
2.如以下图,△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙⊙O交OB于F,连DF并延长交CB的延长线于G.
(1)∠BFG与∠BGF是否相等为什么
(2)求由DG、GE和所围成的图形的面积(阴影局部).
3.如图,以等腰三角形的一腰为直径的⊙O交底边于点,交于点,连结,并过点作,垂足为.根据以上条件写出三个正确结论(除外)是:
(1)___________________________________________________________________________;
(2)___________________________________________________________________________;
(3)___________________________________________________________________________.
4.如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面.问怎样才能截出直径最大的凳面,最大直径是多少厘米?
ABCCCCDBBBBxkb1
1. 12023 2. 第二种 3. 6cm 4. (2,0)
1.解:(1)证明:连接AD
∵AB是⊙O的直径
∴∠ADB=90°
又BD=CD
∴AD是BC的垂直平分线
∴AB=AC
(2)连接OD
∵点O、D分别是AB、BC的中点
∴OD∥AC
又DE⊥AC
∴OD⊥DE
∴DE为⊙O的切线
(3)由AB=AC, ∠BAC=60°知△ABC是等边三角形
∵⊙O的半径为5
∴AB=BC=10, CD=BC=5
又∠C=60°
∴.
2.解:(1)∠BFG=∠BGF
连接OD,∵ OD=OF(⊙O的半径),
∴ ∠ODF=∠OFD.
∵ ⊙O与AC相切于点D,∴ OD⊥AC
又∵ ∠C=90°,即GC⊥AC,∴ OD∥GC,
∴ ∠BGF=∠ODF.
又∵ ∠BFG=∠OFD,∴ ∠BFG=∠BGF.
(2)如以下图,连接OE,那么ODCE为正方形且边长为3.
∵ ∠BFG=∠BGF,
∴ BG=BF=OB-OF=,
从而CG=CB+BG=,
∴ 阴影局部的面积=△DCG的面积-(正方形ODCE的面积 - 扇形ODE的面积)
3.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG等).
4.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′B=25,
所以圆形凳面的最大直径为25(-1)厘米.
°,纸杯的外表积为44.
解:设扇形OAB的圆心角为n°
弧长AB等于纸杯上开口圆周长:
弧长CD等于纸杯下底面圆周长:
可列方程组,解得
所以扇形OAB的圆心角为45°,OF等于16cm
纸杯外表积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积即
S纸杯外表积
=
=