分享
2023届浙江省杭州市八校联盟高三下学期联考数学试题(含解析).doc
下载文档

ID:15573

大小:1.83MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 浙江省 杭州市 联盟 下学 联考 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是 A.y与x具有正的线性相关关系 B.回归直线过样本点的中心(,) C.若该大学某女生身高增加1cm,则其体重约增加0.85kg D.若该大学某女生身高为170cm,则可断定其体重比为58.79kg 2.函数的大致图像为( ) A. B. C. D. 3.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A. B. C. D.以上都不对 4.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( ) A.甲班的数学成绩平均分的平均水平高于乙班 B.甲班的数学成绩的平均分比乙班稳定 C.甲班的数学成绩平均分的中位数高于乙班 D.甲、乙两班这5次数学测试的总平均分是103 5.设数列的各项均为正数,前项和为,,且,则( ) A.128 B.65 C.64 D.63 6.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( ) A. B. C. D. 7.已知向量,,,若,则( ) A. B. C. D. 8.已知命题若,则,则下列说法正确的是( ) A.命题是真命题 B.命题的逆命题是真命题 C.命题的否命题是“若,则” D.命题的逆否命题是“若,则” 9.已知函数(,,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 10.已知函数,,且在上是单调函数,则下列说法正确的是( ) A. B. C.函数在上单调递减 D.函数的图像关于点对称 11.已知数列,,,…,是首项为8,公比为得等比数列,则等于( ) A.64 B.32 C.2 D.4 12.已知函数,若不等式对任意的恒成立,则实数k的取值范围是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____. 14.若复数满足,其中是虚数单位,是的共轭复数,则________. 15.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____. 16.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,三棱柱的侧棱垂直于底面,且,,,,是棱的中点. (1)证明:; (2)求二面角的余弦值. 18.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据: 1.08 1.12 1.19 1.28 1.36 1.48 1.59 1.68 1.80 1.87 2.25 2.37 2.40 2.55 2.64 2.75 2.92 3.03 3.14 3.26 (1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明; (2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001) 附注:①参考数据:,,,,. ②参考公式:相关系数,,. 19.(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点.圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E. (1)求曲线E的方程; (2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值. 20.(12分)已知函数,记不等式的解集为. (1)求; (2)设,证明:. 21.(12分)如图,底面是等腰梯形,,点为的中点,以为边作正方形,且平面平面. (1)证明:平面平面. (2)求二面角的正弦值. 22.(10分)设函数. (1)若,求实数的取值范围; (2)证明:,恒成立. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据y与x的线性回归方程为 y=0.85x﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A正确; 回归直线过样本点的中心(),B正确; 该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确; 该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误. 故选D. 2、D 【答案解析】 通过取特殊值逐项排除即可得到正确结果. 【题目详解】 函数的定义域为,当时,,排除B和C; 当时,,排除A. 故选:D. 【答案点睛】 本题考查图象的判断,取特殊值排除选项是基本手段,属中档题. 3、A 【答案解析】 首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果. 【题目详解】 不超过的素数有,,,,,,,,共个, 从这个素数中任选个,有种可能; 其中选取的两个数,其和等于的有,,共种情况, 故随机选出两个不同的数,其和等于的概率. 故选:. 【答案点睛】 本题考查古典概型概率问题的求解,属于基础题. 4、D 【答案解析】 计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案. 【题目详解】 由题意可得甲班的平均分是104,中位数是103,方差是26.4; 乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确. 因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误. 故选:. 【答案点睛】 本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力. 5、D 【答案解析】 根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求. 【题目详解】 因为, 所以, 所以, 所以数列是等比数列, 又因为, 所以, . 故选:D 【答案点睛】 本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题. 6、A 【答案解析】 设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可. 【题目详解】 设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上 的双曲线”,由题意,,,则所求的概率为 . 故选:A. 【答案点睛】 本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题. 7、A 【答案解析】 根据向量坐标运算求得,由平行关系构造方程可求得结果. 【题目详解】 , ,解得: 故选: 【答案点睛】 本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则. 8、B 【答案解析】 解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论. 【题目详解】 解不等式,解得,则命题为假命题,A选项错误; 命题的逆命题是“若,则”,该命题为真命题,B选项正确; 命题的否命题是“若,则”,C选项错误; 命题的逆否命题是“若,则”,D选项错误. 故选:B. 【答案点睛】 本题考查四种命题的关系,考查推理能力,属于基础题. 9、B 【答案解析】 先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出 和的等价条件,即可根据充分条件,必要条件的定义求出. 【题目详解】 设,根据图象可知, , 再由, 取, ∴. 将函数的图象向右平移个单位长度,得到函数的图象, ∴. ,, 令,则,显然, ∴是的必要不充分条件. 故选:B. 【答案点睛】 本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题. 10、B 【答案解析】 根据函数,在上是单调函数,确定 ,然后一一验证, A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0. 【题目详解】 因为函数,在上是单调函数, 所以 ,即,所以 , 若,则,又因为,即,解得, 而,故A错误. 由,不妨令 ,得 由,得 或 当时,,不合题意. 当时,,此时 所以,故B正确. 因为,函数,在上是单调递增,故C错误. ,故D错误. 故选:B 【答案点睛】 本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题. 11、A 【答案解析】 根据题意依次计算得到答案. 【题目详解】 根据题意知:,,故,,. 故选:. 【答案点睛】 本题考查了数列值的计算,意在考查学生的计算能力. 12、A 【答案解析】 先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可. 【题目详解】 当时,,所以函数在处的切线方程为:,令,它与横轴的交点坐标为. 在同一直角坐标系内画出函数和的图象如下图的所示: 利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是. 故选:A 【答案点睛】 本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 画图直观图可得该几何体为棱锥,再计算高求解体积即可. 【题目详解】 解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形, 上面三角形是等边三角形,左、右三角形是等腰直角三角形, 此四棱锥中,是边长为的正方形, 是边长为的等边三角形, 故,又, 故平面平面, 的高是四棱锥的高, 此四棱锥的体积为: . 故答案为:. 【答案点睛】 本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意 14、 【答案解析】 设,代入已知条件进行化简,根据复数相等的条件,求得的值. 【题目详解】 设,由,得,所以,所以. 故答案为: 【答案点睛】 本小题主要考查共轭复数,考查复数相等

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开