温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
河南省
新乡市
辉县市
第一
高级中学
下学
期一模
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合,,则
A. B. C. D.
2.若集合,则=( )
A. B. C. D.
3.已知集合,,则( )
A. B. C. D.
4.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为( )
A. B. C. D.
5.将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为( )
A. B. C. D.
6.若2m>2n>1,则( )
A. B.πm﹣n>1
C.ln(m﹣n)>0 D.
7.设,,分别是中,,所对边的边长,则直线与的位置关系是( )
A.平行 B.重合
C.垂直 D.相交但不垂直
8.已知为定义在上的奇函数,且满足当时,,则( )
A. B. C. D.
9.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为( )
A. B.
C. D.
10.已知曲线且过定点,若且,则的最小值为( ).
A. B.9 C.5 D.
11.给出下列四个命题:①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是( )
A. B. C. D.
12.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线在处的切线的斜率为________.
14.记为等比数列的前n项和,已知,,则_______.
15.定义,已知,,若恰好有3个零点,则实数的取值范围是________.
16.若函数在和上均单调递增,则实数的取值范围为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆:的两个焦点是,,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.
(1)求椭圆的标准方程;
(2)求证:为定值.
18.(12分)已知在等比数列中,.
(1)求数列的通项公式;
(2)若,求数列前项的和.
19.(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.
(1)求动点的轨迹的方程;
(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.
20.(12分)已知函数为实数)的图像在点处的切线方程为.
(1)求实数的值及函数的单调区间;
(2)设函数,证明时, .
21.(12分)如图,在四棱锥中,底面是边长为2的菱形,,.
(1)证明:平面平面ABCD;
(2)设H在AC上,,若,求PH与平面PBC所成角的正弦值.
22.(10分)已知椭圆:的离心率为,右焦点为抛物线的焦点.
(1)求椭圆的标准方程;
(2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
解一元次二次不等式得或,利用集合的交集运算求得.
【题目详解】
因为或,,所以,故选C.
【答案点睛】
本题考查集合的交运算,属于容易题.
2、C
【答案解析】
求出集合,然后与集合取交集即可.
【题目详解】
由题意,,,则,故答案为C.
【答案点睛】
本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题.
3、B
【答案解析】
求出集合,利用集合的基本运算即可得到结论.
【题目详解】
由,得,则集合,
所以,.
故选:B.
【答案点睛】
本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.
4、A
【答案解析】
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.
【题目详解】
解:,
∴,
设,
∴,
当时,,函数单调递增,
当时,,函数单调递减,
∴,
当时,,当,,
函数恒过点,
分别画出与的图象,如图所示,
,
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,
∴且,即,且
∴,
故实数m的最大值为,
故选:A
【答案点睛】
本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.
5、D
【答案解析】
根据函数图象的变换规律可得到解析式,然后将四个选项代入逐一判断即可.
【题目详解】
解:图象上每一点的横坐标变为原来的2倍,得到
再将图像向左平移个单位长度,得到函数的图象
,
故选:D
【答案点睛】
考查三角函数图象的变换规律以及其有关性质,基础题.
6、B
【答案解析】
根据指数函数的单调性,结合特殊值进行辨析.
【题目详解】
若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确;
而当m,n时,检验可得,A、C、D都不正确,
故选:B.
【答案点睛】
此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.
7、C
【答案解析】
试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直
考点:直线与直线的位置关系
8、C
【答案解析】
由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.
【题目详解】
由题意,,则函数的周期是,
所以,,
又函数为上的奇函数,且当时,,
所以,.
故选:C.
【答案点睛】
本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.
9、D
【答案解析】
设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.
【题目详解】
显然直线不满足条件,故可设直线:,
,,由,得,
,
解得或,
,,
,
,
,
解得,
直线的斜率的取值范围为.
故选:D.
【答案点睛】
本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.
10、A
【答案解析】
根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.
【题目详解】
定点为,
,
当且仅当时等号成立,
即时取得最小值.
故选:A
【答案点睛】
本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.
11、B
【答案解析】
①利用真假表来判断,②考虑内角为,③利用特称命题的否定是全称命题判断,
④利用集合间的包含关系判断.
【题目详解】
若“且”为假命题,则﹑中至少有一个是假命题,故①错误;当内角为时,不是象限角,故②错误;
由特称命题的否定是全称命题知③正确;因为,所以,所以“”是“”的必要条件,
故④正确.
故选:B.
【答案点睛】
本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.
12、C
【答案解析】
设,求,作为的函数,其最小值是6,利用导数知识求的最小值.
【题目详解】
设,则,记,
,易知是增函数,且的值域是,
∴的唯一解,且时,,时,,即,
由题意,而,,
∴,解得,.
∴.
故选:C.
【答案点睛】
本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
求出函数的导数,利用导数的几何意义令,即可求出切线斜率.
【题目详解】
,
,
,
即曲线在处的切线的斜率.
故答案为:
【答案点睛】
本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.
14、
【答案解析】
设等比数列的公比为,将已知条件等式转化为关系式,求解即可.
【题目详解】
设等比数列的公比为,
,
.
故答案为:.
【答案点睛】
本题考查等比数列通项的基本量运算,属于基础题.
15、
【答案解析】
根据题意,分类讨论求解,当时,根据指数函数的图象和性质无零点,不合题意;当时,令,得,令 ,得或 ,再分当,两种情况讨论求解.
【题目详解】
由题意得:当时,在轴上方,且为增函数,无零点,
至多有两个零点,不合题意;
当时,令,得,令 ,得或 ,
如图所示:
当时,即时,要有3个零点,则,解得;
当时,即时,要有3个零点,则,
令,
,
所以在是减函数,又,
要使,则须,所以.
综上:实数的取值范围是.
故答案为:
【答案点睛】
本题主要考查二次函数,指数函数的图象和分段函数的零点问题,还考查了分类讨论的思想和运算求解的能力,利用导数判断函数单调性,属于中档题.
16、
【答案解析】
化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可.
【题目详解】
由知,
当时,在和上单调递增,
在和上均单调递增,
,
,
的取值范围为:.
故答案为:.
【答案点睛】
本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)证明见解析
【答案解析】
(1)根据椭圆的定义可得,将代入椭圆方程,即可求得的值,求得椭圆方程;
(2)设直线的方程,代入椭圆方程,求得直线和的方程,求得和的横坐标,表示出,根据韦达定理即可求证为定值.
【题目详解】
(1)因为,由椭圆的定义得,,
点在椭圆上,代入椭圆方程,解得,
所以的方程为;
(2)证明:设,,直线的斜率为,设直线的方程为,
联立方程组,消去,整理得,
所以,,
直线的直线方程为,令,则,
同理,
所以:
,
代入整理得,
所以为定值.
【答案点睛】
本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题,属于中档题.
18、(1)(2)
【答案解析】
(1)由基本量法,求出公比后可得通项公式;
(2)求出,用裂项相消法求和.
【题目详解】
解:(1)设等比数列的公比为
又因为,所以
解得(舍)或
所以,即
(2)据(1)求解知,,
所以
所以
【答案点睛】
本题考查求等比数列的通项公式,考查裂项相消法求和.解题方法是基本量法.基本量法是解决等差数列和等比数列的基本方法,务必掌握.
19、(1);(2)
【答案解析】
(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动