温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
江西
南昌市
八一
中学
下第
一次
测试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线经过点,焦点为,则直线的斜率为( )
A. B. C. D.
2.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是( )
A. B. C. D.
3.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是( )
A. B. C. D.
4.在三棱锥中,,且分别是棱,的中点,下面四个结论:
①;
②平面;
③三棱锥的体积的最大值为;
④与一定不垂直.
其中所有正确命题的序号是( )
A.①②③ B.②③④ C.①④ D.①②④
5.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )
A. B.6 C. D.
6.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )
A.2 B. C.6 D.8
7.已知集合,,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )
A. B.或
C. D.
8.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( )
A. B. C. D.
9.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )
A. B. C. D.
10.函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是
A.函数的最小正周期是
B.函数的图象关于点成中心对称
C.函数在单调递增
D.函数的图象向右平移后关于原点成中心对称
11.在中,内角的平分线交边于点,,,,则的面积是( )
A. B. C. D.
12.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,且向量与的夹角为_______.
14.函数在的零点个数为_________.
15.在中,角,,的对边长分别为,,,满足,,则的面积为__.
16.已知函数,则过原点且与曲线相切的直线方程为____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.
(1)求的方程;
(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.
18.(12分)已知分别是的内角的对边,且.
(Ⅰ)求.
(Ⅱ)若,,求的面积.
(Ⅲ)在(Ⅱ)的条件下,求的值.
19.(12分)如图,三棱锥中,
(1)证明:面面;
(2)求二面角的余弦值.
20.(12分)如图在四边形中,,,为中点,.
(1)求;
(2)若,求面积的最大值.
21.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.
(1)求一件手工艺品质量为B级的概率;
(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.
①求10件手工艺品中不能外销的手工艺品最有可能是多少件;
②记1件手工艺品的利润为X元,求X的分布列与期望.
22.(10分)已知矩阵,求矩阵的特征值及其相应的特征向量.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
先求出,再求焦点坐标,最后求的斜率
【题目详解】
解:抛物线经过点
,,
,,
故选:A
【答案点睛】
考查抛物线的基础知识及斜率的运算公式,基础题.
2、D
【答案解析】
由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解.
【题目详解】
由题,窗花的面积为,其中小正方形的面积为,
所以所求概率,
故选:D
【答案点睛】
本题考查几何概型的面积公式的应用,属于基础题.
3、C
【答案解析】
连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.
【题目详解】
如图,连接,
椭圆:的右顶点为A,右焦点为F,
B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,
直线BF交直线AC于M,且M为AC的中点
为的中位线,
,且,
,
解得椭圆的离心率.
故选:C
【答案点睛】
本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.
4、D
【答案解析】
①通过证明平面,证得;②通过证明,证得平面;③求得三棱锥体积的最大值,由此判断③的正确性;④利用反证法证得与一定不垂直.
【题目详解】
设的中点为,连接,则,,又,所以平面,所以,故①正确;因为,所以平面,故②正确;当平面与平面垂直时,最大,最大值为,故③错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故④正确.
故选:D
【答案点睛】
本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.
5、D
【答案解析】
用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.
【题目详解】
执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.
故选D.
【答案点睛】
本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.
6、A
【答案解析】
先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.
【题目详解】
由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,
所以该四棱锥的体积为.
故选A
【答案点睛】
本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.
7、C
【答案解析】
根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.
【题目详解】
由韦恩图可知:阴影部分表示,
,,
.
故选:.
【答案点睛】
本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.
8、D
【答案解析】
由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.
【题目详解】
如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,
∴.
正三棱锥外接球球心必在上,设球半径为,
则由得,解得,
∴.
故选:D.
【答案点睛】
本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.
9、C
【答案解析】
求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程.
【题目详解】
解:抛物线的焦点为
可得双曲线
即为的渐近线方程为
由题意可得,即
又,即
解得,.
即双曲线的方程为.
故选:C
【答案点睛】
本题主要考查了求双曲线的方程,属于中档题.
10、B
【答案解析】
根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案.
【题目详解】
根据给定函数的图象,可得点的横坐标为,所以,解得,
所以的最小正周期, 不妨令,,由周期,所以,
又,所以,所以,
令,解得,当时,,即函数的一个对称中心为,即函数的图象关于点成中心对称.故选B.
【答案点睛】
本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题.
11、B
【答案解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.
【题目详解】
为的角平分线,则.
,则,
,
在中,由正弦定理得,即,①
在中,由正弦定理得,即,②
①②得,解得,,
由余弦定理得,,
因此,的面积为.
故选:B.
【答案点睛】
本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.
12、C
【答案解析】
设,求,作为的函数,其最小值是6,利用导数知识求的最小值.
【题目详解】
设,则,记,
,易知是增函数,且的值域是,
∴的唯一解,且时,,时,,即,
由题意,而,,
∴,解得,.
∴.
故选:C.
【答案点睛】
本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
根据向量数量积的定义求解即可.
【题目详解】
解:∵向量,且向量与的夹角为,
∴||;
所以:•()2cos2﹣2=1,
故答案为:1.
【答案点睛】
本题主要考查平面向量的数量积的定义,属于基础题.
14、1
【答案解析】
本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.
【题目详解】
问题函数在的零点个数,可以转化为曲线交点个数问题.
在同一直角坐标系内,画出函数的图象,如下图所示:
由图象可知:当时,两个函数只有一个交点.
故答案为:1
【答案点睛】
本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.
15、.
【答案解析】
由二次方程有解的条件,结合辅助角公式和正弦函数的值域可求,进而可求,然后结合余弦定理可求,代入,计算可得所求.
【题目详解】
解:把看成关于的二次方程,
则,即,
即为,
化为,而,
则,
由于,可得,
可得,即,
代入方程可得,,