温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
山东省
青岛
经济开发区
中学
下学
第五
调研
考试
数学试题
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=( )
A.1 B. C.2 D.4
2.过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,,若,则的最小值是( )
A.1 B.2 C.3 D.4
3.已知,若,则等于( )
A.3 B.4 C.5 D.6
4.双曲线的渐近线方程是( )
A. B. C. D.
5.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )
A. B. C. D.
6.执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是( )
A. B. C. D.
7.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )
A. B. C.3 D.4
8.已知,,分别为内角,,的对边,,,的面积为,则( )
A. B.4 C.5 D.
9.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为( )
A. B. C. D.
10.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为( )
A. B. C. D.
11.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )
A. B. C. D.
12.已知的部分图象如图所示,则的表达式是( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若,,则___________.
14.已知向量,若向量与共线,则________.
15.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.
16.已知向量,且,则___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)当(为自然对数的底数)时,求函数的极值;
(2)为的导函数,当,时,求证:.
18.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:
等级
不合格
合格
得分
频数
6
24
(1)由该题中频率分布直方图求测试成绩的平均数和中位数;
(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;
(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.
19.(12分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求直线与平面所成角的正弦值.
20.(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.
(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?
(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;
(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?
附:
0.050
0.010
0.001
3.841
6.635
10.828
21.(12分)若正数满足,求的最小值.
22.(10分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中点,AC,BD交于点O.
(1)求证:OE∥平面PBC;
(2)求三棱锥E﹣PBD的体积.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.
【题目详解】
由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,
设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),
∴y1+y2=p,
又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,
故选C.
【答案点睛】
本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.
2、C
【答案解析】
设直线AB的方程为,代入得:,由根与系数的关系得,,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.
【题目详解】
根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,
设直线AB的方程为,代入得:.
由根与系数的关系得,,
所以.
又直线CD的方程为,同理,
所以,
所以.故.过点P作PM垂直于准线,M为垂足,
则由抛物线的定义可得.
所以,当Q,P,M三点共线时,等号成立.
故选:C.
【答案点睛】
本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.
3、C
【答案解析】
先求出,再由,利用向量数量积等于0,从而求得.
【题目详解】
由题可知,
因为,所以有,得,
故选:C.
【答案点睛】
该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.
4、C
【答案解析】
根据双曲线的标准方程即可得出该双曲线的渐近线方程.
【题目详解】
由题意可知,双曲线的渐近线方程是.
故选:C.
【答案点睛】
本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.
5、A
【答案解析】
求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.
【题目详解】
抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A.
【答案点睛】
本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.
6、B
【答案解析】
根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.
【题目详解】
执行框图如下:
初始值:,
第一步:,此时不能输出,继续循环;
第二步:,此时不能输出,继续循环;
第三步:,此时不能输出,继续循环;
第四步:,此时不能输出,继续循环;
第五步:,此时不能输出,继续循环;
第六步:,此时要输出,结束循环;
故,判断条件为.
故选B
【答案点睛】
本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.
7、A
【答案解析】
根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案.
【题目详解】
根据题意,抛物线的焦点为,
则双曲线的焦点也为,即,
则有,解可得,
双曲线的离心率.
故选:A.
【答案点睛】
本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.
8、D
【答案解析】
由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出 的值.
【题目详解】
解:,即
,即.
,则.
,解得.
,
故选:D.
【答案点睛】
本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角 的正弦值余弦值.
9、C
【答案解析】
如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.
【题目详解】
如图所示:在平面的投影为正方形的中心,故球心在上,
,故,,
设球半径为,则,解得,故.
故选:.
【答案点睛】
本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.
10、A
【答案解析】
求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率.
【题目详解】
不妨设双曲线的一条渐近线与圆交于,
因为,所以圆心到的距离为:,
即,因为,所以解得.
故选A.
【答案点睛】
本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.
11、C
【答案解析】
作,;,由题意,由二倍角公式即得解.
【题目详解】
由题意,,准线:,
作,;,
设,
故,,
.
故选:C
【答案点睛】
本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
12、D
【答案解析】
由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.
【题目详解】
由图象可得,函数的最小正周期为,.
将点代入函数的解析式得,得,
,,则,,
因此,.
故选:D.
【答案点睛】
本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
因为,所以,又,所以,则,所以.
14、
【答案解析】
计算得到,根据向量平行计算得到答案.
【题目详解】
由题意可得,
因为与共线,所以有,即,解得.
故答案为:.
【答案点睛】
本题考查了根据向量平行求参数,意在考查学生的计算能力.
15、2
【答案解析】
利用AB中有且只有一个元素,可得,可求实数a的值.
【题目详解】
由题意AB中有且只有一个元素,所以,即.
故答案为:.
【答案点睛】
本题主要考查集合的交集运算,集合交