分享
2023届山东省临沭县高三下第一次测试数学试题(含解析).doc
下载文档

ID:15299

大小:2.34MB

页数:22页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 山东省 临沭县 下第 一次 测试 数学试题 解析
2023学年高考数学模拟测试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于( ) A.6 B.7 C.8 D.9 2.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:) A.1624 B.1024 C.1198 D.1560 3.已知函数的导函数为,记,,…,N. 若,则 ( ) A. B. C. D. 4.如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( ) A. B. C. D. 5.设,则,则( ) A. B. C. D. 6.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是( ) A. B. C. D. 7.如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是( ). A. B. C. D. 8.半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( ) A. B. C. D. 9.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( ) A. B. C. D. 10.执行如图所示的程序框图,如果输入,则输出属于( ) A. B. C. D. 11.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角. 由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 正切值 0.439 0.444 0.450 0.455 0.461 年代 公元元年 公元前2000年 公元前4000年 公元前6000年 公元前8000年 根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A.公元前2000年到公元元年 B.公元前4000年到公元前2000年 C.公元前6000年到公元前4000年 D.早于公元前6000年 12.已知数列的前项和为,且,,,则的通项公式( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.执行以下语句后,打印纸上打印出的结果应是:_____. 14.已知数列的前项满足,则______. 15.在中, ,,则_________. 16.的展开式中项的系数为_______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到. (1)为上一点,且,当平面时,求实数的值; (2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦. 18.(12分)在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图: (1)证明:平面平面 (2)求平面与平面所成二面角的大小. 19.(12分)如图,在四边形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF. (Ⅰ)求证:平面ADE⊥平面BDEF; (Ⅱ)若二面角CBFD的大小为60°,求CF与平面ABCD所成角的正弦值. 20.(12分)已知椭圆的离心率为,点在椭圆上. (Ⅰ)求椭圆的标准方程; (Ⅱ)设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点. 21.(12分)在中,a,b,c分别是角A,B,C的对边,并且. (1)已知_______________,计算的面积; 请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分. (2)求的最大值. 22.(10分)已知是递增的等比数列,,且、、成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设,,求数列的前项和. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值. 【题目详解】 解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则. 解法二:由赋值法易求得,可知当时,取最小值. 故选:A 【答案点睛】 此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题. 2、B 【答案解析】 根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得. 【题目详解】 依题意 :1,4,8,14,23,36,54,…… 两两作差得 :3,4,6,9,13,18,…… 两两作差得 :1,2,3,4,5,…… 设该数列为,令,设的前项和为,又令,设的前项和为. 易,,进而得,所以,则,所以,所以. 故选:B 【答案点睛】 本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题. 3、D 【答案解析】 通过计算,可得,最后计算可得结果. 【题目详解】 由题可知: 所以 所以猜想可知: 由 所以 所以 故选:D 【答案点睛】 本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题. 4、A 【答案解析】 作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可. 【题目详解】 作于,于. 因为平面平面,平面.故, 故平面.故二面角为. 又直线与平面所成角为,因为, 故.故,当且仅当重合时取等号. 又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号. 故. 故选:A 【答案点睛】 本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题. 5、A 【答案解析】 根据换底公式可得,再化简,比较的大小,即得答案. 【题目详解】 , , . ,显然. ,即, ,即. 综上,. 故选:. 【答案点睛】 本题考查换底公式和对数的运算,属于中档题. 6、D 【答案解析】 先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解. 【题目详解】 甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种, 其中甲第一个到、丙第三个到有甲乙丙,共1种, 所以甲第一个到、丙第三个到的概率是. 故选:D 【答案点睛】 本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题. 7、C 【答案解析】 易得,,又,平方计算即可得到答案. 【题目详解】 设双曲线C的左焦点为E,易得为平行四边形, 所以,又, 故,,, 所以,即, 故离心率为. 故选:C. 【答案点睛】 本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题. 8、D 【答案解析】 根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积. 【题目详解】 如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的, 该几何体的体积为, 故选:D. 【答案点睛】 本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题. 9、C 【答案解析】 根据三视图还原为几何体,结合组合体的结构特征求解表面积. 【题目详解】 由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C. 【答案点睛】 本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养. 10、B 【答案解析】 由题意,框图的作用是求分段函数的值域,求解即得解. 【题目详解】 由题意可知, 框图的作用是求分段函数的值域, 当; 当 综上:. 故选:B 【答案点睛】 本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题. 11、D 【答案解析】 先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项. 【题目详解】 解:由题意,可设冬至日光与垂直线夹角为,春秋分日光与垂直线夹角为, 则即为冬至日光与春秋分日光的夹角,即黄赤交角, 将图3近似画出如下平面几何图形: 则,, . , 估计该骨笛的大致年代早于公元前6000年. 故选:. 【答案点睛】 本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题. 12、C 【答案解析】 利用证得数列为常数列,并由此求得的通项公式. 【题目详解】 由,得,可得(). 相减得,则(),又 由,,得,所以,所以为常 数列,所以,故. 故选:C 【答案点睛】 本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识. 二、填空题:本题共4小题,每小题5分,共20分。 13、1 【答案解析】 根据程序框图直接计算得到答案. 【题目详解】 程序在运行过程中各变量的取值如下所示: 是否继续循环 i x 循环前 1 4 第一圈 是 4 4+2 第二圈 是 7 4+2+8 第三圈 是 10 4+2+8+14 退出循环,所以打印纸上打印出的结果应

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开