温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
吉林省
安图县
林中
学高三
下学
第五
调研
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数在区间有三个零点,,,且,若,则的最小正周期为( )
A. B. C. D.
2.执行如下的程序框图,则输出的是( )
A. B.
C. D.
3.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )
A.8 B. C. D.
4.设点,,不共线,则“”是“”( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
5.已知命题,且是的必要不充分条件,则实数的取值范围为( )
A. B. C. D.
6.如图,设为内一点,且,则与的面积之比为
A. B.
C. D.
7.已知空间两不同直线、,两不同平面,,下列命题正确的是( )
A.若且,则 B.若且,则
C.若且,则 D.若不垂直于,且,则不垂直于
8.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是( )
A.在上是减函数 B.在上是增函数
C.不是函数的最小值 D.对于,都有
9.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )
A. B. C. D.
10.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是( )
A. B. C. D.
11.函数(),当时,的值域为,则的范围为( )
A. B. C. D.
12.已知集合,,则等于( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设的内角的对边分别为,,.若,,,则_____________
14.已知非零向量的夹角为,且,则______.
15.已知数列满足,,若,则数列的前n项和______.
16.函数的定义域为____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(Ⅰ)解不等式;
(Ⅱ)设其中为常数.若方程在上恰有两个不相等的实数根,求实数的取值范围.
18.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.
19.(12分)设函数()的最小值为.
(1)求的值;
(2)若,,为正实数,且,证明:.
20.(12分)已知函数,其中.
(1)①求函数的单调区间;
②若满足,且.求证: .
(2)函数.若对任意,都有,求的最大值.
21.(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.
(1)证明:为等差数列,并求;
(2)设,数列的前项和为,求满足的最小正整数的值.
22.(10分)在数列和等比数列中,,,.
(1)求数列及的通项公式;
(2)若,求数列的前n项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期.
【题目详解】
解:由于在区间有三个零点,,,
当时,,
∴由对称轴可知,满足,
即.
同理,满足,即,
∴,,
所以最小正周期为:.
故选:C.
【答案点睛】
本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.
2、A
【答案解析】
列出每一步算法循环,可得出输出结果的值.
【题目详解】
满足,执行第一次循环,,;
成立,执行第二次循环,,;
成立,执行第三次循环,,;
成立,执行第四次循环,,;
成立,执行第五次循环,,;
成立,执行第六次循环,,;
成立,执行第七次循环,,;
成立,执行第八次循环,,;
不成立,跳出循环体,输出的值为,故选:A.
【答案点睛】
本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.
3、D
【答案解析】
根据三视图还原几何体为四棱锥,即可求出几何体的表面积.
【题目详解】
由三视图知几何体是四棱锥,如图,
且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,
所以,
故选:
【答案点睛】
本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.
4、C
【答案解析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.
【题目详解】
由于点,,不共线,则“”;
故“”是“”的充分必要条件.
故选:C.
【答案点睛】
本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.
5、D
【答案解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.
【题目详解】
解:命题,即: ,
是的必要不充分条件,
,
,解得.实数的取值范围为.
故选:.
【答案点睛】
本题考查根据充分、必要条件求参数范围,其思路方法:
(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.
(2)求解参数的取值范围时, 一定要注意区间端点值的检验.
6、A
【答案解析】
作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.
【题目详解】
如图,作交于点,
则,由题意,,,且,
所以
又,所以,,即,
所以本题答案为A.
【答案点睛】
本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.
7、C
【答案解析】
因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.
8、B
【答案解析】
根据函数对称性和单调性的关系,进行判断即可.
【题目详解】
由得关于对称,
若关于对称,则函数在上不可能是单调的,
故错误的可能是或者是,
若错误,
则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.
故错误的是,
故选:.
【答案点睛】
本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.
9、C
【答案解析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.
【题目详解】
由几何体的三视图可得,
几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,
故此几何体的体积为圆柱的体积减去三棱柱的体积,
即,
故选C.
【答案点睛】
本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.
10、C
【答案解析】
先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.
【题目详解】
先作出函数在上的部分图象,再作出关于原点对称的图象,
如图所示,当时,对称后的图象不可能与在的图象有3个交点;
当时,要使函数关于原点对称后的图象与所作的图象有3个交点,
则,解得.
故选:C.
【答案点睛】
本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.
11、B
【答案解析】
首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.
【题目详解】
因为,所以,若值域为,
所以只需,∴.
故选:B
【答案点睛】
本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.
12、A
【答案解析】
进行交集的运算即可.
【题目详解】
,1,2,,,
,1,.
故选:.
【答案点睛】
本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、或
【答案解析】
试题分析:由,则可运用同角三角函数的平方关系:,
已知两边及其对角,求角.用正弦定理;,
则;可得.
考点:运用正弦定理解三角形.(注意多解的情况判断)
14、1
【答案解析】
由已知条件得出,可得,解之可得答案.
【题目详解】
向量的夹角为,且,,可得:,
可得, 解得,
故答案为:1.
【答案点睛】
本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.
15、
【答案解析】
,求得的通项,进而求得,得通项公式,利用等比数列求和即可.
【题目详解】
由题为等差数列,∴,∴,∴,∴,故答案为
【答案点睛】
本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.
16、
【答案解析】
由题意得,解得定义域为.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ);(Ⅱ).
【答案解析】
(I)零点分段法,分,,讨论即可;
(II),分,,三种情况讨论.
【题目详解】
原不等式即.
当时,化简得.解得;
当时,化简得.此时无解;
当时,化简得.解得.
综上,原不等式的解集为
由题意,
设方程两根为.
当时,方程等价于方程.
易知当,方程在上有两个不相等的实数根.
此时方程在上无解.
满足条件.
当时,方程等价于方程,
此时方程在上显然没有两个不相等的实数根.
当时,易知当,
方程在上有且只有一个实数根.
此时方程在上也有一个实数根.
满足条件.
综上,实数的取值范围为.
【答案点睛】
本题考查解绝对值不等式以及方程根的个数求参数范围,考查学生的运算能力,是一道中档题.
18、(Ⅰ)(Ⅱ)证明见解析
【答案解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,对分奇偶讨论,即可得;
(Ⅱ)由(Ⅰ)得,用错位相减法求出,运用分析法证明即可.
【题目详解】
(Ⅰ),
当为奇数时,,又由,得,
当为偶数时,,又由a2=3,得,
;
(Ⅱ)由(1)得,
则①
②
①-②可得:
,
,
若证明Sn,则需要证明,
又,即证明,即证,
又显然成立,故Sn得证.
【答案点睛】
本题主要考查了由递推公式求通项公式,错位相减法求前项和,分析法证明不等式,考查了分类讨论的思想,考查了学生的运算