温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
吉林省
延边
州高三
适应性
调研
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若的二项式展开式中二项式系数的和为32,则正整数的值为( )
A.7 B.6 C.5 D.4
2.已知锐角满足则( )
A. B. C. D.
3.已知函数为奇函数,则( )
A. B.1 C.2 D.3
4.已知集合,,则
A. B.
C. D.
5.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为( )
A. B. C. D.
6.已知函数,则方程的实数根的个数是( )
A. B. C. D.
7.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( )
A.方差 B.中位数 C.众数 D.平均数
8.的展开式中的系数是( )
A.160 B.240 C.280 D.320
9.执行如图所示的程序框图,若输出的,则①处应填写( )
A. B. C. D.
10.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.3 C. D.4
11.函数f(x)=的图象大致为()
A. B.
C. D.
12.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是( )
A.③④ B.①③ C.②③ D.①②
二、填空题:本题共4小题,每小题5分,共20分。
13.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________.
14.若,,则___________.
15.已知以x±2y =0为渐近线的双曲线经过点,则该双曲线的标准方程为________.
16.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.
(1)求线段长的最小值;
(2)求点的轨迹方程.
18.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.
(1)求直线CM与平面PAB所成角的正弦值;
(2)求二面角D-AP-B的余弦值;
(3)试判断直线MN与平面PAB的位置关系,并给出证明.
19.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:
普查对象类别
顺利
不顺利
合计
企事业单位
40
10
50
个体经营户
100
50
150
合计
140
60
200
(1)写出选择5个国家综合试点地区采用的抽样方法;
(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;
(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.
附:
0.10
0.010
0.001
2.706
6.635
10.828
20.(12分)已知函数.
(1)解不等式;
(2)若,,,求证:.
21.(12分)如图,已知四棱锥,平面,底面为矩形,,为的中点,.
(1)求线段的长.
(2)若为线段上一点,且,求二面角的余弦值.
22.(10分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求直线与平面所成角的正弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由二项式系数性质,的展开式中所有二项式系数和为计算.
【题目详解】
的二项展开式中二项式系数和为,.
故选:C.
【答案点睛】
本题考查二项式系数的性质,掌握二项式系数性质是解题关键.
2、C
【答案解析】
利用代入计算即可.
【题目详解】
由已知,,因为锐角,所以,,
即.
故选:C.
【答案点睛】
本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.
3、B
【答案解析】
根据整体的奇偶性和部分的奇偶性,判断出的值.
【题目详解】
依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.
故选:B
【答案点睛】
本小题主要考查根据函数的奇偶性求参数值,属于基础题.
4、D
【答案解析】
因为,,
所以,,故选D.
5、C
【答案解析】
由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.
【题目详解】
当时,则,,
所以,,显然当时,
,故,,若对于任意正整数不等式
恒成立,即对于任意正整数恒成立,即对于任
意正整数恒成立,设,,令,解得,
令,解得,考虑到,故有当时,单调递增,
当时,有单调递减,故数列的最大值为,
所以.
故选:C.
【答案点睛】
本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.
6、D
【答案解析】
画出函数 ,将方程看作交点个数,运用图象判断根的个数.
【题目详解】
画出函数
令有两解 ,则分别有3个,2个解,故方程的实数根的个数是3+2=5个
故选:D
【答案点睛】
本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题.
7、A
【答案解析】
通过方差公式分析可知方差没有改变,中位数、众数和平均数都发生了改变.
【题目详解】
由题可知,中位数和众数、平均数都有变化.
本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,
根据方差公式可知方差不变.
故选:A
【答案点睛】
本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.
8、C
【答案解析】
首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.
【题目详解】
由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.
故选:C
【答案点睛】
本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.
9、B
【答案解析】
模拟程序框图运行分析即得解.
【题目详解】
;
;.
所以①处应填写“”
故选:B
【答案点睛】
本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.
10、C
【答案解析】
首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.
【题目详解】
解:根据几何体的三视图转换为几何体为:
该几何体为由一个三棱柱体,切去一个三棱锥体,
如图所示:
故:.
故选:C.
【答案点睛】
本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.
11、D
【答案解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.
【题目详解】
因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.
又f(2)==-<0.排除A,故选D.
【答案点睛】
本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.
12、C
【答案解析】
①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.
【题目详解】
①当直线x、y、z位于正方体的三条共点棱时,不正确;
②因为垂直于同一平面的两直线平行,正确;
③因为垂直于同一直线的两平面平行,正确;
④如x、y、z位于正方体的三个共点侧面时, 不正确.
故选:C.
【答案点睛】
此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.
【题目详解】
如图,
设双曲线的左焦点为,连接,由于.所以四边形为矩形,
故.
在中,
由双曲线的定义可得
,
.
故答案为:
【答案点睛】
本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.
14、
【答案解析】
因为,所以,又,所以,则,所以.
15、
【答案解析】
设双曲线方程为,代入点,计算得到答案.
【题目详解】
双曲线渐近线为,则设双曲线方程为:,代入点,则.
故双曲线方程为:.
故答案为:.
【答案点睛】
本题考查了根据渐近线求双曲线,设双曲线方程为是解题的关键.
16、60
【答案解析】
根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.
【题目详解】
如图所示:设双曲线的半焦距为.
因为,,,所以由勾股定理,得.
所以.
因为是上一个靠近点的三等分点,是的中点,所以.
由双曲线的定义可知:,所以.
在中,由余弦定理可得
,所以,整理可得.
所以,解得.所以.
则.则,得.
则的底边上的高为.
所以
.
故答案为:60
【答案点睛】
本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)(2)
【答案解析】
(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.
(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.
【题目详解】