分享
2023学年黑龙江省大庆大庆十中、二中、二十三中、二十八中高三下学期第五次调研考试数学试题(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 黑龙江省 大庆 十三 十八 中高 下学 第五 调研 考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知函数,若,,,则a,b,c的大小关系是( ) A. B. C. D. 2.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是( ) A.若,且,则 B.若,且,则 C.若,且,则 D.若,且,则 3.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( ) A. B. C. D. 4.已知函数,则( ) A.1 B.2 C.3 D.4 5.为得到函数的图像,只需将函数的图像( ) A.向右平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向左平移个长度单位 6.函数在上的图象大致为( ) A. B. C. D. 7.设,命题“存在,使方程有实根”的否定是( ) A.任意,使方程无实根 B.任意,使方程有实根 C.存在,使方程无实根 D.存在,使方程有实根 8.下列不等式成立的是( ) A. B. C. D. 9.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( ) A. B. C. D. 10.已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为( ) A. B. C. D. 11.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为( )   A.45 B.60 C.75 D.100 12.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A. B. C. D.以上都不对 二、填空题:本题共4小题,每小题5分,共20分。 13.在中,,是的角平分线,设,则实数的取值范围是__________. 14.等腰直角三角形内有一点P,,,,,则面积为______. 15.已知四棱锥,底面四边形为正方形,,四棱锥的体积为,在该四棱锥内放置一球,则球体积的最大值为_________. 16.已知三棱锥,,是边长为4的正三角形,,分别是、的中点,为棱上一动点(点除外),,若异面直线与所成的角为,且,则______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)设函数 . (I)求的最小正周期; (II)若且,求的值. 18.(12分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下: 现随机抽取了100为会员统计它们的消费次数,得到数据如下: 假设该项目的成本为每次30元,根据给出的数据回答下列问题: (1)估计1位会员至少消费两次的概率 (2)某会员消费4次,求这4次消费获得的平均利润; (3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望 19.(12分)金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下: 愿意 不愿意 男生 60 20 女士 40 40 (1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关; (2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求. 附:,其中. 0.05 0.01 0.001 3.841 6.635 10.828 20.(12分)如图,在四棱锥中,底面为直角梯形,,,,,,点、分别为,的中点,且平面平面. (1)求证:平面. (2)若,求直线与平面所成角的正弦值. 21.(12分)已知函数,记不等式的解集为. (1)求; (2)设,证明:. 22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为. (Ⅰ)求直线的直角坐标方程与曲线的普通方程; (Ⅱ)已知点设直线与曲线相交于两点,求的值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案. 【题目详解】 解:根据题意,函数,其导数函数, 则有在上恒成立, 则在上为增函数; 又由, 则; 故选:. 【答案点睛】 本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题. 2、D 【答案解析】 利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除. 【题目详解】 解:对于,当,且,则与的位置关系不定,故错; 对于,当时,不能判定,故错; 对于,若,且,则与的位置关系不定,故错; 对于,由可得,又,则故正确. 故选:. 【答案点睛】 本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理. 一般可借助正方体模型,以正方体为主线直观感知并准确判断. 3、A 【答案解析】 根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可. 【题目详解】 在中,,,,由余弦定理,得, 所以. 所以所求概率为. 故选A. 【答案点睛】 本题考查了几何概型的概率计算问题,是基础题. 4、C 【答案解析】 结合分段函数的解析式,先求出,进而可求出. 【题目详解】 由题意可得,则. 故选:C. 【答案点睛】 本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题. 5、D 【答案解析】 ,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D 6、C 【答案解析】 根据函数的奇偶性及函数在时的符号,即可求解. 【题目详解】 由可知函数为奇函数. 所以函数图象关于原点对称,排除选项A,B; 当时,, ,排除选项D, 故选:C. 【答案点睛】 本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题. 7、A 【答案解析】 只需将“存在”改成“任意”,有实根改成无实根即可. 【题目详解】 由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是 “任意,使方程无实根”. 故选:A 【答案点睛】 本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题. 8、D 【答案解析】 根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误. 【题目详解】 对于,,,错误; 对于,在上单调递减,,错误; 对于,,,,错误; 对于,在上单调递增,,正确. 故选:. 【答案点睛】 本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性. 9、B 【答案解析】 先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求. 【题目详解】 解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有, 其和等于16的结果,共2种等可能的结果, 故概率. 故选:B. 【答案点睛】 古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题. 10、C 【答案解析】 不妨设在第一象限,故,根据得到,解得答案. 【题目详解】 不妨设在第一象限,故,,即, 即,解得,(舍去). 故选:. 【答案点睛】 本题考查了椭圆的离心率,意在考查学生的计算能力. 11、B 【答案解析】 根据程序框图中程序的功能,可以列方程计算. 【题目详解】 由题意,. 故选:B. 【答案点睛】 本题考查程序框图,读懂程序的功能是解题关键. 12、A 【答案解析】 首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果. 【题目详解】 不超过的素数有,,,,,,,,共个, 从这个素数中任选个,有种可能; 其中选取的两个数,其和等于的有,,共种情况, 故随机选出两个不同的数,其和等于的概率. 故选:. 【答案点睛】 本题考查古典概型概率问题的求解,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 设,,,由,用面积公式表示面积可得到,利用,即得解. 【题目详解】 设,,, 由得: , 化简得, 由于, 故. 故答案为: 【答案点睛】 本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题. 14、 【答案解析】 利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果. 【题目详解】 设 由题可知: 由, ,, 所以 化简可得: 则或,即或 由,所以 所以 故答案为: 【答案点睛】 本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题. 15、 【答案解析】 由题知,该四棱锥为正四棱锥,作出该正四棱锥的高和斜高,连接,则球心O必在的边上,设,由球与四棱锥的内切关系可知,设,用和表示四棱锥的体积,解得和的关系,进而表示出内切球的半径,并求出半径的最大值,进而求出球的体积的最大值. 【题目详解】 设,, 由球O内切于四棱锥可知,,, 则,球O的半径, , ,, 当且仅当时,等号成立, 此时. 故答案为:. 【答案点睛】 本题考查了棱锥的体积问题,内切球问题,考查空间想象能力,属于较难的填空压轴题. 16、 【答案解析】 取的中点,连接,,取的中点,连接,,,直线与所成的角为,计算,,根据余弦定理计算得到答案。 【题目详解】 取的中点,连接,,依题意可得,, 所以平面,所以, 因为,分别、的中点,所以,因为,所以, 所以平面,故,故,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开