分享
2023年初二数学一次函数知识点总结.docx
下载文档

ID:1499859

大小:9.35KB

页数:4页

格式:DOCX

时间:2023-04-21

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 年初 数学 一次 函数 知识点 总结
初二数学一次函数知识点总结   知识点1 一次函数和正比例函数的概念   假设两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,那么称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.   知识点2 函数的图象   由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。.不必一定选取这两个特殊点.   画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.   知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质   (1)k的正负决定直线的倾斜方向;   ①k>0时,y的值随x值的增大而增大;   ②k﹤O时,y的值随x值的增大而减小.   (2)|k|大小决定直线的倾斜程度,即|k|越大   ①当b>0时,直线与y轴交于正半轴上;   ②当b0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);   ②如下列图,当k>0,b   ③如下列图,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);   ④如下列图,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).   (5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.   知识点4 正比例函数y=kx(k≠0)的性质   (1)正比例函数y=kx的图象必经过原点;   (2)当k>0时,图象经过第一、三象限,y随x的增大而增大;   (3)当k知识点5 点P(x0,y0)与直线y=kx+b的图象的关系   (1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;   (2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.   例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,那么点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.   知识点6 确定正比例函数及一次函数表达式的条件   (1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.   (2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.   知识点7 待定系数法   先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.   知识点8 用待定系数法 确定一次函数表达式一般步骤   (1)设函数表达式为y=kx+b;   (2)将点的坐标代入函数表达式,解方程(组);   (3)求出k与b的值,得到函数表达式.   思想方法小结 (1)函数方法.(2)数形结合法.   知识规律小结 (1)常数k,b对直线y=kx+b(k≠0)位置的影响.   ①当b>0时,直线与y轴的正半轴相交;   当b=0时,直线经过原点;   当b﹤0时,直线与y轴的负半轴相交.   ②当k,b异号时,直线与x轴正半轴相交;   当b=0时,直线经过原点;   当k,b同号时,直线与x轴负半轴相交.   ③当k>O,b>O时,图象经过第一、二、三象限;   当k>0,b=0时,图象经过第一、三象限;   当b>O,b

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开