温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
重庆市
中山
外国语学校
下第
一次
测试
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一个几何体的三视图如图所示,则这个几何体的体积为( )
A. B.
C. D.
2.函数的图象大致是( )
A. B.
C. D.
3.已知关于的方程在区间上有两个根,,且,则实数的取值范围是( )
A. B. C. D.
4.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为( )
A. B. C. D.
5.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则( )
A.170 B.10 C.172 D.12
6.已知函数满足,且,则不等式的解集为( )
A. B. C. D.
7.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为( )
A. B. C. D.
8.设P={y |y=-x2+1,x∈R},Q={y |y=2x,x∈R},则
A.P Q B.Q P
C.Q D.Q
9.为虚数单位,则的虚部为( )
A. B. C. D.
10.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为( )
A. B. C. D.
11.若直线与曲线相切,则( )
A.3 B. C.2 D.
12.展开项中的常数项为
A.1 B.11 C.-19 D.51
二、填空题:本题共4小题,每小题5分,共20分。
13.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
14.若,则_________.
15.已知,那么______.
16.已知向量满足,且,则 _________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,,.
(1)求的最小值;
(2)若对任意,都有,求实数的取值范围.
18.(12分)已知分别是内角的对边,满足
(1)求内角的大小
(2)已知,设点是外一点,且,求平面四边形面积的最大值.
19.(12分)已知等差数列的公差,且,,成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前项和.
20.(12分)己知函数.
(1)当时,求证:;
(2)若函数,求证:函数存在极小值.
21.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数.
(1)写出与的直角坐标方程;
(2)在什么范围内取值时,与有交点.
22.(10分)已知数列满足,,,且.
(1)求证:数列为等比数列,并求出数列的通项公式;
(2)设,求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.
【题目详解】
由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥
半个圆柱体积为:
四棱锥体积为:
原几何体体积为:
本题正确选项:
【答案点睛】
本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.
2、B
【答案解析】
根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.
【题目详解】
设,,则的定义域为.,当,,单增,当,,单减,则.则在上单增,上单减,.选B.
【答案点睛】
本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.
3、C
【答案解析】
先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.
【题目详解】
由题化简得,,
作出的图象,
又由易知.
故选:C.
【答案点睛】
本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.
4、A
【答案解析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.
【题目详解】
由得,
即,即,
因为,所以,
由余弦定理,所以,
由的面积公式得
故选:A
【答案点睛】
本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.
5、D
【答案解析】
中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.
【题目详解】
由茎叶图知,甲的中位数为,故;
乙的平均数为,
解得,所以.
故选:D.
【答案点睛】
本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.
6、B
【答案解析】
构造函数,利用导数研究函数的单调性,即可得到结论.
【题目详解】
设,则函数的导数,,,即函数为减函数,,,则不等式等价为,
则不等式的解集为,即的解为,,由得或,解得或,
故不等式的解集为.故选:.
【答案点睛】
本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.
7、B
【答案解析】
由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.
【题目详解】
平面,底面是边长为2的正方形,
如图建立空间直角坐标系,由题意:
,,,,,
为的中点,.
,,
,
异面直线与所成角的余弦值为即为.
故选:B.
【答案点睛】
本题考查了空间向量的应用,考查了空间想象能力,属于基础题.
8、C
【答案解析】
解:因为P ={y|y=-x2+1,x∈R}={y|y1},Q ={y| y=2x,x∈R }={y|y>0},因此选C
9、C
【答案解析】
利用复数的运算法则计算即可.
【题目详解】
,故虚部为.
故选:C.
【答案点睛】
本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.
10、B
【答案解析】
延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.
【题目详解】
解:延长到,使,连接,则四边形为平行四边形,
则,,,
在中,
则,得,
.
故选:B.
【答案点睛】
本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.
11、A
【答案解析】
设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.
【题目详解】
设切点为,
∵,∴
由①得,
代入②得,
则,,
故选A.
【答案点睛】
该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.
12、B
【答案解析】
展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.
【题目详解】
展开式中的项为常数项,有3种情况:
(1)5个括号都出1,即;
(2)两个括号出,两个括号出,一个括号出1,即;
(3)一个括号出,一个括号出,三个括号出1,即;
所以展开项中的常数项为,故选B.
【答案点睛】
本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.
二、填空题:本题共4小题,每小题5分,共20分。
13、130. 15.
【答案解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.
【题目详解】
(1),顾客一次购买草莓和西瓜各一盒,需要支付元.
(2)设顾客一次购买水果的促销前总价为元,
元时,李明得到的金额为,符合要求.
元时,有恒成立,即,即元.
所以的最大值为.
【答案点睛】
本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.
14、
【答案解析】
因为,所以.因为,所以,又,所以,所以..
15、
【答案解析】
由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.
【题目详解】
∵,
∴,,
∴.
故答案为:.
【答案点睛】
本小题主要考查诱导公式、同角三角函数的基本关系式,属于基础题.
16、
【答案解析】
由数量积的运算律求得,再由数量积的定义可得结论.
【题目详解】
由题意,
∴,即,∴.
故答案为:.
【答案点睛】
本题考查求向量的夹角,掌握数量积的定义与运算律是解题关键.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)2;(2).
【答案解析】
(1)化简得,所以,展开后利用基本不等式求最小值即可;
(2)由(1),原不等式可转化为,讨论去绝对值即可求得的取值范围.
【题目详解】
(1)∵,,
∴,∴.
∴
.
当且仅当且即时,.
(2)由(1)知,,
对任意,都有,
∴,即.
①当时,有,
解得;
②当,时,有,
解得;
③当时,有,
解得;
综上,,
∴实数的取值范围是.
【答案点睛】
本题主要考查基本不等式的运用和求解含绝对值的不等式,考查学生的分类思想和计算能力,属于中档题.
18、(1)(2)
【答案解析】
(1)首先利用诱导公式及两角和的余弦公式得到,再由同角三角三角的基本关系得到,即可求出角;
(2)由(1)知,是正三角形,设,由余弦定理可得:,则,得到,再利用辅助角公式化简,最后由正弦函数的性质求得最大值;
【题目详解】
解:(1)由,
,
,
,
,
,
,
;
(2)由(1)知,是正三角形,设,
由余弦定理得:,
,,
所以当时有最大值
【答案点睛】
本题考查同角三角函数的基本关系,三角恒等变换公式的应用,三角形面积公式的应用,以及正弦函数的性质,属于中档题.
19、(1);(2).
【答案解析】
(1)根据等比中项性质可构造方程求得,由等差数列通项公式可求得结果;
(2)由(1)可得,可知为等比数列,利用分组求和法,结合等差和等比数列求和公式可求得结果.
【题目详解】
(1)成等比数列,,即,
,解得:,
.
(2)由(1)得:,,,
数列是首项为,公比为的等比数列,
.
【答案点睛】
本题考查等差数列通项公式的求解