温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
重庆
实验
外国语学校
高高
下学
期一模
考试
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若时,,则的取值范围为( )
A. B. C. D.
2.已知命题:,,则为( )
A., B.,
C., D.,
3.已知角的终边与单位圆交于点,则等于( )
A. B. C. D.
4.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为( )
A. B. C. D.
5.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( )
A. B.
C. D.
6.下列判断错误的是( )
A.若随机变量服从正态分布,则
B.已知直线平面,直线平面,则“”是“”的充分不必要条件
C.若随机变量服从二项分布: , 则
D.是的充分不必要条件
7.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是( )
A. B. C. D.
8.设分别为的三边的中点,则( )
A. B. C. D.
9.在中所对的边分别是,若,则( )
A.37 B.13 C. D.
10.已知复数z满足(i为虚数单位),则z的虚部为( )
A. B. C.1 D.
11.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是( )
A.乙的数据分析素养优于甲
B.乙的数学建模素养优于数学抽象素养
C.甲的六大素养整体水平优于乙
D.甲的六大素养中数据分析最差
12.若复数是纯虚数,则实数的值为( )
A.或 B. C. D.或
二、填空题:本题共4小题,每小题5分,共20分。
13.若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有___________.(填上所有正确答案的序号)
①,,;
②,,;
③,,;
④,,.
14.已知下列命题:
①命题“∃x0∈R,”的否定是“∀x∈R,x2+1<3x”;
②已知p,q为两个命题,若“p∨q”为假命题,则“”为真命题;
③“a>2”是“a>5”的充分不必要条件;
④“若xy=0,则x=0且y=0”的逆否命题为真命题.
其中所有真命题的序号是________.
15.已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,,若线段的垂直平分线与轴交点的横坐标为,则的值为_________.
16.安排名男生和名女生参与完成项工作,每人参与一项,每项工作至少由名男生和名女生完成,则不同的安排方式共有________种(用数字作答).
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.
(1)证明:平面;
(2)求点N到平面CDM的距离.
18.(12分)在△ABC中,分别为三个内角A、B、C的对边,且
(1)求角A;
(2)若且求△ABC的面积.
19.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.
(1)求椭圆的标准方程;
(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.
20.(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.
图:设备改造前样本的频率分布直方图
表:设备改造后样本的频率分布表
质量指标值
频数
2
18
48
14
16
2
(1)求图中实数的值;
(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.
21.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于,两点,求的值.
22.(10分)如图,在三棱柱中,、、分别是、、的中点.
(1)证明:平面;
(2)若底面是正三角形,,在底面的投影为,求到平面的距离.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
由题得对恒成立,令,然后分别求出即可得的取值范围.
【题目详解】
由题得对恒成立,
令,
在单调递减,且,
在上单调递增,在上单调递减,
,
又在单调递增,,
的取值范围为.
故选:D
【答案点睛】
本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.
2、C
【答案解析】
根据全称量词命题的否定是存在量词命题,即得答案.
【题目详解】
全称量词命题的否定是存在量词命题,且命题:,,
.
故选:.
【答案点睛】
本题考查含有一个量词的命题的否定,属于基础题.
3、B
【答案解析】
先由三角函数的定义求出,再由二倍角公式可求.
【题目详解】
解:角的终边与单位圆交于点
,
,
故选:B
【答案点睛】
考查三角函数的定义和二倍角公式,是基础题.
4、A
【答案解析】
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.
【题目详解】
解:,
∴,
设,
∴,
当时,,函数单调递增,
当时,,函数单调递减,
∴,
当时,,当,,
函数恒过点,
分别画出与的图象,如图所示,
,
若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,
∴且,即,且
∴,
故实数m的最大值为,
故选:A
【答案点睛】
本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.
5、C
【答案解析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.
【题目详解】
如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.
故选:C
【答案点睛】
本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.
6、D
【答案解析】
根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.
【题目详解】
对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;
对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;
对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;
对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.
因而是的既不充分也不必要条件,故选项不正确,符合题意.
故选:D
【答案点睛】
本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.
7、A
【答案解析】
由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.
【题目详解】
由已知可得,,所以,从而双曲线方程为
,不妨设点在双曲线右支上运动,则,当时,
此时,所以,
,所以;
当轴时,,所以,又为锐角三
角形,所以.
故选:A.
【答案点睛】
本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.
8、B
【答案解析】
根据题意,画出几何图形,根据向量加法的线性运算即可求解.
【题目详解】
根据题意,可得几何关系如下图所示:
,
故选:B
【答案点睛】
本题考查了向量加法的线性运算,属于基础题.
9、D
【答案解析】
直接根据余弦定理求解即可.
【题目详解】
解:∵,
∴,
∴,
故选:D.
【答案点睛】
本题主要考查余弦定理解三角形,属于基础题.
10、D
【答案解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.
【题目详解】
因为复数z满足,
所以,
所以z的虚部为.
故选:D.
【答案点睛】
本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.
11、C
【答案解析】
根据题目所给图像,填写好表格,由表格数据选出正确选项.
【题目详解】
根据雷达图得到如下数据:
数学抽象
逻辑推理
数学建模
直观想象
数学运算
数据分析
甲
4
5
4
5
4
5
乙
3
4
3
3
5
4
由数据可知选C.
【答案点睛】
本题考查统计问题,考查数据处理能力和应用意识.
12、C
【答案解析】
试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.
考点:纯虚数
二、填空题:本题共4小题,每小题5分,共20分。
13、①②④
【答案解析】
由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对①,③,④都可以采用此法判断,对②分析式子特点可知,,进而判断
【题目详解】
①时,令,则,单调递增, ,即.令,则,单调递减,,即,因此,满足题意.
②时,易知,满足题意.
③注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为,易知,,因此不存在直线满足题意.
④时,注意到,因此如果存在直线,只有可能是(或)在处的切线,,因此切线为.
令,则,易知在上单调递增,在上单调递减,所以,即.
令,则,易知在上单调递减,在上单调递增,所以,即.
因此,满足题意.
故答案为:①②④
【答案点睛】
本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题
14、②
【答案解析】
命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”,故①错误;“p∨q”为假命题说明p假q假,则(p)∧(q)为真命题,故②