分享
2023学年衡水金卷高三下学期联合考试数学试题(含解析).doc
下载文档

ID:14801

大小:1.95MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 衡水 金卷高三 下学 联合 考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设变量满足约束条件,则目标函数的最大值是( ) A.7 B.5 C.3 D.2 2.在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则( ) A. B. C. D. 3.命题“”的否定为( ) A. B. C. D. 4.在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为( ) A. B. C. D. 5.执行如图所示的程序框图后,输出的值为5,则的取值范围是( ). A. B. C. D. 6.已知与之间的一组数据: 1 2 3 4 3.2 4.8 7.5 若关于的线性回归方程为,则的值为( ) A.1.5 B.2.5 C.3.5 D.4.5 7.已知,则( ) A. B. C. D. 8.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( ) A.72种 B.144种 C.288种 D.360种 9.已知等差数列的前项和为,,,则( ) A.25 B.32 C.35 D.40 10.已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( ) A.5 B.3 C. D.2 11.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为( ) A. B. C. D. 12.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是( ) A.8 B.7 C.6 D.4 二、填空题:本题共4小题,每小题5分,共20分。 13.已知,满足约束条件则的最大值为__________. 14.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________. 15.在中,若,则的范围为________. 16.已知函数有且只有一个零点,则实数的取值范围为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知是公比为的无穷等比数列,其前项和为,满足,________.是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由. 从①,②,③这三个条件中任选一个,补充在上面问题中并作答. 18.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,求的面积的值(或最大值).已知的内角,,所对的边分别为,,,三边,,与面积满足关系式:,且 ,求的面积的值(或最大值). 19.(12分)第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表. 分类意识强 分类意识弱 合计 试点后 试点前 合计 已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为. (1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由; (2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望. 参考公式:,其中. 下面的临界值表仅供参考 20.(12分)已知函数,曲线在点处的切线方程为. (1)求,的值; (2)证明函数存在唯一的极大值点,且. 21.(12分)已知椭圆经过点,离心率为. (1)求椭圆的方程; (2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上. 22.(10分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为. (1)求椭圆的方程; (2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【题目详解】 画出约束条件,表示的可行域,如图, 由可得, 将变形为, 平移直线, 由图可知当直经过点时, 直线在轴上的截距最大, 最大值为,故选B. 【答案点睛】 本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 2、A 【答案解析】 根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果. 【题目详解】 由题可知:,又为锐角 所以, 根据三角函数的定义: 所以 由 所以 故选:A 【答案点睛】 本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题. 3、C 【答案解析】 套用命题的否定形式即可. 【题目详解】 命题“”的否定为“”,所以命题“”的否定为“”. 故选:C 【答案点睛】 本题考查全称命题的否定,属于基础题. 4、A 【答案解析】 由已知可得到直线的倾斜角为,有,再利用即可解决. 【题目详解】 由F到直线的距离为,得直线的倾斜角为,所以, 即,解得. 故选:A. 【答案点睛】 本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题. 5、C 【答案解析】 框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n. 【题目详解】 第一次循环:;第二次循环:; 第三次循环:;第四次循环:; 此时满足输出结果,故. 故选:C. 【答案点睛】 本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题. 6、D 【答案解析】 利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解. 【题目详解】 利用表格中数据,可得 又, . 解得 故选:D 【答案点睛】 本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题. 7、D 【答案解析】 根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案. 【题目详解】 因为,所以,所以是减函数, 又因为,所以,, 所以,,所以A,B两项均错; 又,所以,所以C错; 对于D,,所以, 故选D. 【答案点睛】 这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系. 8、B 【答案解析】 利用分步计数原理结合排列求解即可 【题目详解】 第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种. 选. 【答案点睛】 本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题 9、C 【答案解析】 设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得. 【题目详解】 设等差数列的首项为,公差为,则 ,解得,∴,即有. 故选:C. 【答案点睛】 本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题. 10、D 【答案解析】 由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离. 【题目详解】 解:由抛物线方程可知,,即,.设 则,即,所以. 所以线段的中点到轴的距离为. 故选:D. 【答案点睛】 本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和. 11、B 【答案解析】 通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值. 【题目详解】 解:由题意可知,抛物线的准线方程为,, 过作垂直直线于, 由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大, 设在的方程为:,所以, 解得:, 所以,解得, 所以, . 故选:. 【答案点睛】 本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题. 12、A 【答案解析】 则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法. 【题目详解】 最底层正方体的棱长为8, 则从下往上第二层正方体的棱长为:, 从下往上第三层正方体的棱长为:, 从下往上第四层正方体的棱长为:, 从下往上第五层正方体的棱长为:, 从下往上第六层正方体的棱长为:, 从下往上第七层正方体的棱长为:, 从下往上第八层正方体的棱长为:, ∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8. 故选:A. 【答案点睛】 本小题主要考查正方体有关计算,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、1 【答案解析】 先画出约束条件的可行域,根据平移法判断出最优点,代入目标函数的解析式,易可得到目标函数的最大值. 【题目详解】 解:由约束条件得如图所示的三角形区域, 由于,则, 要求的最大值,则求的截距的最小值, 显然当平行直线过点时, 取得最大值为:. 故答案为:1. 【答案点睛】 本题考查线性规划求最值问题,我们常用几何法求最值. 14、 【答案解析】 问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果. 【题目详解】 解:直线,点,, 直线上存在点满足, 的轨迹方程是. 如图,直线与圆有公共点,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开