温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
浙江省
台州市
联谊
高考
仿真
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,点,,,,设对一切都有不等式 成立,则正整数的最小值为( )
A. B. C. D.
2.设复数满足,在复平面内对应的点的坐标为则( )
A. B.
C. D.
3.若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是
A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)
4.已知满足,则( )
A. B. C. D.
5.设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.复数在复平面内对应的点为则( )
A. B. C. D.
7.已知函数(),若函数有三个零点,则的取值范围是( )
A. B.
C. D.
8.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为( )
A. B. C. D.
9.已知集合,,则( )
A. B.
C.或 D.
10.执行如图所示的程序框图,输出的结果为( )
A. B.4 C. D.
11.已知、,,则下列是等式成立的必要不充分条件的是( )
A. B.
C. D.
12.已知,都是偶函数,且在上单调递增,设函数,若,则( )
A.且
B.且
C.且
D.且
二、填空题:本题共4小题,每小题5分,共20分。
13.正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为________.
14.在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为______.
15.设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_________时,为的几何平均数.(只需写出一个符合要求的函数即可)
16.二项式的展开式的各项系数之和为_____,含项的系数为_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,三棱柱中,与均为等腰直角三角形,,侧面是菱形.
(1)证明:平面平面;
(2)求二面角的余弦值.
18.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为(θ为参数).
(Ⅰ)求曲线C1和C2的极坐标方程:
(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求|AB|的值.
19.(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.
20.(12分)已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
21.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.
22.(10分)在平面四边形中,已知,.
(1)若,求的面积;
(2)若求的长.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
先求得,再求得左边的范围,只需,利用单调性解得t的范围.
【题目详解】
由题意知sin,∴,
∴,随n的增大而增大,∴,
∴,即,又f(t)=在t上单增,f(2)= -1<0,f(3)=2>0,
∴正整数的最小值为3.
【答案点睛】
本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.
2、B
【答案解析】
根据共轭复数定义及复数模的求法,代入化简即可求解.
【题目详解】
在复平面内对应的点的坐标为,则,
,
∵,
代入可得,
解得.
故选:B.
【答案点睛】
本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.
3、C
【答案解析】
求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.
【题目详解】
由题意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.
令x3+x2-=-,得x=0或x=-3,
则结合图象可知,解得a∈[-3,0),
故选C.
【答案点睛】
本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.
4、A
【答案解析】
利用两角和与差的余弦公式展开计算可得结果.
【题目详解】
,.
故选:A.
【答案点睛】
本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.
5、D
【答案解析】
先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.
【题目详解】
解:由,得,
所以,其在复平面内对应的点为,在第四象限
故选:D
【答案点睛】
此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.
6、B
【答案解析】
求得复数,结合复数除法运算,求得的值.
【题目详解】
易知,则.
故选:B
【答案点睛】
本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.
7、A
【答案解析】
分段求解函数零点,数形结合,分类讨论即可求得结果.
【题目详解】
作出和,的图像如下所示:
函数有三个零点,
等价于与有三个交点,
又因为,且由图可知,
当时与有两个交点,
故只需当时,与有一个交点即可.
若当时,
时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;
时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;
时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;
时,显然与有一个交点,故满足题意.
综上所述,要满足题意,只需.
故选:A.
【答案点睛】
本题考查由函数零点的个数求参数范围,属中档题.
8、A
【答案解析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.
【题目详解】
由得,
即,即,
因为,所以,
由余弦定理,所以,
由的面积公式得
故选:A
【答案点睛】
本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.
9、D
【答案解析】
首先求出集合,再根据补集的定义计算可得;
【题目详解】
解:∵,解得
∴,∴.
故选:D
【答案点睛】
本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.
10、A
【答案解析】
模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.
【题目详解】
程序运行过程如下:
,;,;,;
,;,;
,;,,退出循环,输出结果为,
故选:A.
【答案点睛】
该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.
11、D
【答案解析】
构造函数,,利用导数分析出这两个函数在区间上均为减函数,由得出,分、、三种情况讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论.
【题目详解】
构造函数,,
则,,
所以,函数、在区间上均为减函数,
当时,则,;当时,,.
由得.
①若,则,即,不合乎题意;
②若,则,则,
此时,,
由于函数在区间上单调递增,函数在区间上单调递增,则,;
③若,则,则,
此时,
由于函数在区间上单调递减,函数在区间上单调递增,则,.
综上所述,.
故选:D.
【答案点睛】
本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.
12、A
【答案解析】
试题分析:由题意得,,
∴,,
∵,∴,∴,
∴若:,,∴,
若:,,∴,
若:,,∴,
综上可知,同理可知,故选A.
考点:1.函数的性质;2.分类讨论的数学思想.
【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致与大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为.
考点:几何体的体积的计算.
14、
【答案解析】
取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得,, 由等腰直角三角形的性质,得,根据面面垂直的性质得平面,,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.
【题目详解】
在等边三角形中,取的中点,设等边三角形的中心为,
连接.由,得,,
由已知可得是以为斜边的等腰直角三角形,,
又由已知可得平面平面,平面,,
,所以,为三棱锥外接球的球心,外接球半径,
三棱锥外接球的表面积为.
故答案为:
【答案点睛】
本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.
15、
【答案解析】
由定义可知三点共线,即,通过整理可得,继而可求出正确答案.
【题目详解】
解:根据题意,由定义可知:三点共线.
故可得:,即,整理得:,
故可以选择等.
故答案为: .
【答案点睛】
本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.
16、
【答案解析】
将代入二项式可得展开式各项系数之和,写出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.
【题目详解】
将代入二项式可得展开式各项系数和为.
二项式的展开式通项为,
令,解得,因此,展开式中含项的系数为.
故答案为:;.
【答案点睛】
本题考查了二项式定理及二项式展开式通项公式,属基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析(2)
【答案解析】
(1)取中点,连接,,通过证明,得,结合可证线面垂直,继而可证面面垂直.
(2)设,建立空间直角坐标系,求出平面和平面的法向量,继而可求二面角的余弦值.
【题目详解】
解析:(1)取中点,连接,,
由已知可得,,,
∵侧面是菱形,∴,,,
即,∵,∴平面,∴平面平面.
(2)设,则,建立如图所示空间直角坐