温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
浙江省
宁波市
宁波
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有( )
A.60 B.192 C.240 D.432
2.在满足,的实数对中,使得成立的正整数的最大值为( )
A.5 B.6 C.7 D.9
3.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )
A. B.
C. D.以上情况均有可能
4.已知复数,则的虚部是( )
A. B. C. D.1
5.设集合,,若集合中有且仅有2个元素,则实数的取值范围为
A. B.
C. D.
6.已知实数满足,则的最小值为( )
A. B. C. D.
7.已知等差数列中,若,则此数列中一定为0的是( )
A. B. C. D.
8.把函数的图象向右平移个单位,得到函数的图象.给出下列四个命题
①的值域为
②的一个对称轴是
③的一个对称中心是
④存在两条互相垂直的切线
其中正确的命题个数是( )
A.1 B.2 C.3 D.4
9.在菱形中,,,,分别为,的中点,则( )
A. B. C.5 D.
10.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA| =( )
A.1 B.2 C.3 D.4
11.函数()的图象的大致形状是( )
A. B. C. D.
12.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则( )
A.在点F的运动过程中,存在EF//BC1
B.在点M的运动过程中,不存在B1M⊥AE
C.四面体EMAC的体积为定值
D.四面体FA1C1B的体积不为定值
二、填空题:本题共4小题,每小题5分,共20分。
13.在中,内角的对边分别是,若,,则____.
14.设满足约束条件,则的取值范围是______.
15.观察下列式子,,,,……,根据上述规律,第个不等式应该为__________.
16.已知四棱锥,底面四边形为正方形,,四棱锥的体积为,在该四棱锥内放置一球,则球体积的最大值为_________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.
(1)求B;
(2)若,,且,求BD的长度.
18.(12分)已知函数.
(1)当时.
①求函数在处的切线方程;
②定义其中,求;
(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
19.(12分)已知函数
(I)若讨论的单调性;
(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.
20.(12分)已知等差数列满足,.
(l)求等差数列的通项公式;
(2)设,求数列的前项和.
21.(12分)如图,在四棱锥中,侧棱底面,,,,,是棱中点.
(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;
(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.
22.(10分) [选修4 - 5:不等式选讲]
已知都是正实数,且,求证: .
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.
【题目详解】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.
故选:C.
【答案点睛】
本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.
2、A
【答案解析】
由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,
从而得出的最大值.
【题目详解】
因为,
则,即
整理得,令,
设,
则,
令,则,令,则,
故在上单调递增,在上单调递减,则,
因为,,
由题可知:时,则,所以,
所以,
当无限接近时,满足条件,所以,
所以要使得
故当时,可有,
故,即,
所以:最大值为5.
故选:A.
【答案点睛】
本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.
3、B
【答案解析】
由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较.
【题目详解】
由可得,即函数的周期,
因为在区间上单调递减,故函数在区间上单调递减,
根据偶函数的对称性可知,在上单调递增,
因为,是锐角三角形的两个内角,
所以且即,
所以即,
.
故选:.
【答案点睛】
本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.
4、C
【答案解析】
化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.
【题目详解】
,,所以的虚部为.
故选:C
【答案点睛】
本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.
5、B
【答案解析】
由题意知且,结合数轴即可求得的取值范围.
【题目详解】
由题意知,,则,故,
又,则,所以,
所以本题答案为B.
【答案点睛】
本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.
6、A
【答案解析】
所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值.
【题目详解】
解:因为满足,
则
,
当且仅当时取等号,
故选:.
【答案点睛】
本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.
7、A
【答案解析】
将已知条件转化为的形式,由此确定数列为的项.
【题目详解】
由于等差数列中,所以,化简得,所以为.
故选:A
【答案点睛】
本小题主要考查等差数列的基本量计算,属于基础题.
8、C
【答案解析】
由图象变换的原则可得,由可求得值域;利用代入检验法判断②③;对求导,并得到导函数的值域,即可判断④.
【题目详解】
由题,,
则向右平移个单位可得,
,的值域为,①错误;
当时,,所以是函数的一条对称轴,②正确;
当时,,所以的一个对称中心是,③正确;
,则,使得,则在和处的切线互相垂直,④正确.
即②③④正确,共3个.
故选:C
【答案点睛】
本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.
9、B
【答案解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.
【题目详解】
设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,
则,,,,,
所以.
故选:B.
【答案点睛】
本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.
10、C
【答案解析】
方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.
方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.
【题目详解】
方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,
则,所以,又
所以由等腰三角形三线合一得点的横坐标为,
所以,所以.
方法二:抛物线的准线方程为,直线
由题意设两点横坐标分别为,
则由抛物线定义得
又 ①
②
由①②得.
故选:C
【答案点睛】
本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.
11、C
【答案解析】
对x分类讨论,去掉绝对值,即可作出图象.
【题目详解】
故选C.
【答案点睛】
识图常用的方法
(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;
(2)定量计算法:通过定量的计算来分析解决问题;
(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.
12、C
【答案解析】
采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.
【题目详解】
A错误
由平面,//
而与平面相交,
故可知与平面相交,所以不存在EF//BC1
B错误,如图,作
由
又平面,所以平面
又平面,所以
由//,所以
,平面
所以平面,又平面
所以,所以存在
C正确
四面体EMAC的体积为
其中为点到平面的距离,
由//,平面,平面
所以//平面,
则点到平面的距离即点到平面的距离,
所以为定值,故四面体EMAC的体积为定值
错误
由//,平面,平面
所以//平面,
则点到平面的距离即为点到平面的距离,
所以为定值
所以四面体FA1C1B的体积为定值
故选:C
【答案点睛】
本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.
【题目详解】
根据正弦定理:
可得
根据余弦定理:
由已知可得:
故可联立方程:
解得:.
由
故答案为:.
【答案点睛】
本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.
14、
【答案解析】
作出可行域,将目标函数整理为可视为可行解与的斜率,则由图可知或,分别计算出与,再由不等式的简单性质即可求得答案.
【题目详解】
作出满足约束条件的可行域,
显然当时,z=0;
当时将目标函数整理为可视为可行解与的斜率,则由图可知或
显然,联立,所以