温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
河南省
永城市
高级中学
高考
数学
考前
最后
一卷
预测
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是( )
A.8 B.9 C.10 D.11
2.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,aβ,bα,则“ab“是“αβ”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
3.设P={y |y=-x2+1,x∈R},Q={y |y=2x,x∈R},则
A.P Q B.Q P
C.Q D.Q
4.已知命题,那么为( )
A. B.
C. D.
5.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有( )
A.6种 B.12种 C.24种 D.36种
6. “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( )
A.56383 B.57171 C.59189 D.61242
7.已知平面向量,满足,且,则与的夹角为( )
A. B. C. D.
8.已知正项数列满足:,设,当最小时,的值为( )
A. B. C. D.
9.已知,则的大小关系为
A. B. C. D.
10.已知角的终边经过点,则
A. B.
C. D.
11.若的展开式中的系数之和为,则实数的值为( )
A. B. C. D.1
12.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设,则______.
14.已知数列为等差数列,数列为等比数列,满足,其中,,则的值为_______________.
15.如图所示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、、、为顶点的四面体的外接球的体积为________.
16.已知,,且,则的最小值是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,.
(1)当时,求函数的值域;
(2),,求实数的取值范围.
18.(12分)已知椭圆的长轴长为,离心率
(1)求椭圆的方程;
(2)设分别为椭圆与轴正半轴和轴正半轴的交点,是椭圆上在第一象限的一点,直线与轴交于点,直线与轴交于点,问与面积之差是否为定值?说明理由.
19.(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.
(1)求的通项公式;
(2)若数列满足,求的值.
20.(12分)已知函数(是自然对数的底数,).
(1)求函数的图象在处的切线方程;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).
21.(12分)设函数.
(1)若恒成立,求整数的最大值;
(2)求证:.
22.(10分)已知函数(为常数)
(Ⅰ)当时,求的单调区间;
(Ⅱ)若为增函数,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据题意计算,,,解不等式得到答案.
【题目详解】
∵是以1为首项,2为公差的等差数列,∴.
∵是以1为首项,2为公比的等比数列,∴.
∴
.
∵,∴,解得.则当时,的最大值是9.
故选:.
【答案点睛】
本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.
2、D
【答案解析】
根据面面平行的判定及性质求解即可.
【题目详解】
解:a⊂α,b⊂β,a∥β,b∥α,
由a∥b,不一定有α∥β,α与β可能相交;
反之,由α∥β,可得a∥b或a与b异面,
∴a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a∥β,b∥α,
则“a∥b“是“α∥β”的既不充分也不必要条件.
故选:D.
【答案点睛】
本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.
3、C
【答案解析】
解:因为P ={y|y=-x2+1,x∈R}={y|y1},Q ={y| y=2x,x∈R }={y|y>0},因此选C
4、B
【答案解析】
利用特称命题的否定分析解答得解.
【题目详解】
已知命题,,那么是.
故选:.
【答案点睛】
本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.
5、B
【答案解析】
分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.
【题目详解】
如果甲单独到县,则方法数有种.
如果甲与另一人一同到县,则方法数有种.
故总的方法数有种.
故选:B
【答案点睛】
本小题主要考查简答排列组合的计算,属于基础题.
6、C
【答案解析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.
【题目详解】
被5除余3且被7除余2的正整数构成首项为23,
公差为的等差数列,记数列
则
令,解得.
故该数列各项之和为.
故选:C.
【答案点睛】
本题考查等差数列的应用,属基础题。
7、C
【答案解析】
根据, 两边平方,化简得,再利用数量积定义得到求解.
【题目详解】
因为平面向量,满足,且,
所以,
所以,
所以 ,
所以,
所以与的夹角为.
故选:C
【答案点睛】
本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.
8、B
【答案解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.
【题目详解】
由得,
即,
,当且仅当时取得最小值,
此时.
故选:B
【答案点睛】
本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.
9、D
【答案解析】
分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.
详解:由题意可知:,即,,即,
,即,综上可得:.本题选择D选项.
点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.
10、D
【答案解析】
因为角的终边经过点,所以,则,
即.故选D.
11、B
【答案解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.
【题目详解】
由,
则展开式中的系数为,展开式中的系数为,
二者的系数之和为,得.
故选:B.
【答案点睛】
本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.
12、C
【答案解析】
设,则,,,设,根据化简得到,得到答案.
【题目详解】
设,则,,,则,设,
则,两式相减得到:,
,,即,,
,故,即,故,故.
故选:.
【答案点睛】
本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、121
【答案解析】
在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.
【题目详解】
令,得,令,得,两式相加,得,所以.
故答案为:.
【答案点睛】
本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.
14、
【答案解析】
根据题意,判断出,根据等比数列的性质可得,再令数列中的,,,根据等差数列的性质,列出等式,求出和的值即可.
【题目详解】
解:由,其中,,
可得,则,令,,
可得.①
又令数列中的,,,
根据等差数列的性质,可得,
所以.②
根据①②得出,.
所以.
故答案为.
【答案点睛】
本题主要考查等差数列、等比数列的性质,属于基础题.
15、
【答案解析】
将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.
【题目详解】
由已知,将三棱锥置入正方体中,如图所示
,,故正方体体对角线长为,
所以外接球半径为,其体积为.
故答案为:.
【答案点睛】
本题考查三棱锥外接球的体积问题,一般在处理特殊几何体的外接球问题时,要考虑是否能将其置入正(长)方体中,是一道中档题.
16、8
【答案解析】
由整体代入法利用基本不等式即可求得最小值.
【题目详解】
,
当且仅当时等号成立.
故的最小值为8,
故答案为:8.
【答案点睛】
本题考查基本不等式求和的最小值,整体代入法,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2).
【答案解析】
(1)将代入函数的解析式,将函数的及解析式变形为分段函数,利用二次函数的基本性质可求得函数的值域;
(2)由参变量分离法得出在区间内有解,分和讨论,求得函数的最大值,即可得出实数的取值范围.
【题目详解】
(1)当时,.
当时,;
当时,.
函数的值域为;
(2)不等式等价于,
即在区间内有解
当时,,此时,,则;
当时,,
函数在区间上单调递增,当时,,则.
综上,实数的取值范围是.
【答案点睛】
本题主要考查含绝对值函数的值域与含绝对值不等式有解的问题,利用绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键,考查分类讨论思想的应用,属于中等题.
18、(1)(2)是定值,详见解析
【答案解析】
(1)根据长轴长为,离心率,则有求解.
(2)设,则,直线,令得,,则,直线,令,得,则,再根据求解.
【题目详解】
(1)依题意得,
解得,
则椭圆的方程.
(2)设,则,
直线,
令得,,
则,
直线,
令,得,
则,
.
【答案点睛】
本题主要考查椭圆的方程及直线与椭圆的位置关系,还考查了平面几何知识和运算求解的能力,属于中档题.
19、(1)(2)
【答案解析】
(1)由公比表示出,由成等差数列可求得,从而数列的通项公式;
(2)求(1)得,然后对和式两两并项后利用等差数列的前项和公式可求解.
【题目详解】
(1)∵是等比数列,且成等差数列
∴,即
∴,解得