温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
江西省
新余
市两
重点校
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好; ③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“ ,”的充要条件;其中真命题的个数为( )
A.4 B.3 C.2 D.1
2.定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是( )
A. B. C. D.
3.已知复数,则的虚部为( )
A.-1 B. C.1 D.
4.若表示不超过的最大整数(如,,),已知,,,则( )
A.2 B.5 C.7 D.8
5.已知实数满足约束条件,则的最小值为( )
A.-5 B.2 C.7 D.11
6.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( )
A. B. C.或- D.和-
7.要得到函数的导函数的图像,只需将的图像( )
A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍
B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍
C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍
D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍
8.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )
A. B. C. D.
9.已知满足,则( )
A. B. C. D.
10.执行如图所示的程序框图若输入,则输出的的值为( )
A. B. C. D.
11.直线与圆的位置关系是( )
A.相交 B.相切 C.相离 D.相交或相切
12.若变量,满足,则的最大值为( )
A.3 B.2 C. D.10
二、填空题:本题共4小题,每小题5分,共20分。
13.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.
14.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.
15.已知全集,集合,则______.
16.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.
求椭圆的标准方程;
直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.
18.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:
研发费用(百万元)
2
3
6
10
13
15
18
21
销量(万盒)
1
1
2
2.5
3.5
3.5
4.5
6
(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);
(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.
附:(1)相关系数
(2),,,.
19.(12分)某景点上山共有级台阶,寓意长长久久.甲上台阶时,可以一步走一个台阶,也可以一步走两个台阶,若甲每步上一个台阶的概率为,每步上两个台阶的概率为.为了简便描述问题,我们约定,甲从级台阶开始向上走,一步走一个台阶记分,一步走两个台阶记分,记甲登上第个台阶的概率为,其中,且.
(1)若甲走步时所得分数为,求的分布列和数学期望;
(2)证明:数列是等比数列;
(3)求甲在登山过程中,恰好登上第级台阶的概率.
20.(12分)如图,直三棱柱中,分别是的中点,.
(1)证明:平面;
(2)求二面角的余弦值.
21.(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.
(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.
(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.
22.(10分)已知,.
(1)当时,证明:;
(2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
①根据线性相关性与r的关系进行判断,
②根据相关指数的值的性质进行判断,
③根据方差关系进行判断,
④根据点满足回归直线方程,但点不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断.
【题目详解】
①若两个随机变量的线性相关性越强,则相关系数r的绝对值越接近于1,故①正确;
②用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好,故②错误;
③若统计数据的方差为1,则的方差为,故③正确;
④因为点满足回归直线方程,但点不一定就是这一组数据的中心点,即,不一定成立,而回归直线必过样本中心点,所以当,时,点 必满足线性回归方程 ;因此“满足线性回归方程”是“ ,”必要不充分条件.故 ④错误; 所以正确的命题有①③.
故选:C.
【答案点睛】
本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.
2、B
【答案解析】
由题意可得的周期为,当时,,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.
【题目详解】
是定义域为R的偶函数,满足任意,
,令,
又,
为周期为的偶函数,
当时,,
当,
当,
作出图像,如下图所示:
函数至少有三个零点,
则的图像和的图像至少有个交点,
,若,
的图像和的图像只有1个交点,不合题意,
所以,的图像和的图像至少有个交点,
则有,即,
.
故选:B.
【答案点睛】
本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.
3、A
【答案解析】
分子分母同乘分母的共轭复数即可.
【题目详解】
,故的虚部为.
故选:A.
【答案点睛】
本题考查复数的除法运算,考查学生运算能力,是一道容易题.
4、B
【答案解析】
求出,,,,,,判断出是一个以周期为6的周期数列,求出即可.
【题目详解】
解:.,
∴,,
,
同理可得:;;.;,,…….
∴.
故是一个以周期为6的周期数列,
则.
故选:B.
【答案点睛】
本题考查周期数列的判断和取整函数的应用.
5、A
【答案解析】
根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.
【题目详解】
由约束条件,画出可行域如图
变为为斜率为-3的一簇平行线,为在轴的截距,
最小的时候为过点的时候,
解得所以,
此时
故选A项
【答案点睛】
本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.
6、C
【答案解析】
直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果.
【题目详解】
如图,直线过定点(0,1),
∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°,
∴由对称性可知k=±.
故选C.
【答案点睛】
本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题.
7、D
【答案解析】
先求得,再根据三角函数图像变换的知识,选出正确选项.
【题目详解】
依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.
故选:D
【答案点睛】
本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.
8、C
【答案解析】
利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.
【题目详解】
设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.
故选:C
【答案点睛】
本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.
9、A
【答案解析】
利用两角和与差的余弦公式展开计算可得结果.
【题目详解】
,.
故选:A.
【答案点睛】
本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.
10、C
【答案解析】
由程序语言依次计算,直到时输出即可
【题目详解】
程序的运行过程为
当n=2时,时,,此时输出.
故选:C
【答案点睛】
本题考查由程序框图计算输出结果,属于基础题
11、D
【答案解析】
由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.
【题目详解】
解:由题意,圆的圆心为,半径,
∵圆心到直线的距离为,
,
,
故选:D.
【答案点睛】
本题主要考查直线与圆的位置关系,属于基础题.
12、D
【答案解析】
画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.
【题目详解】
解:画出满足条件的平面区域,如图示:
如图点坐标分别为,
目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.
故选:D
【答案点睛】
本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、①
【答案解析】
由三角形的正弦定理和边角关系可判断①;由零点存在定理和二次函数的图象可判断②;
由,结合奇函数的定义,可判断③;由函数图象对称的特点可判断④.
【题目详解】
解:①在中,,故①正确;
②函数在区间上存在零点,比如在存在零点,
但是,故②错误;
③对于函数,若,满足,
但可能为奇函数,故③错误;
④函数与的图象,可令,即,
即有和的图象关于直线对称,即对称,故④错误.
故答案为:①.
【答案点睛】
本题