分享
2023学年浙江诸暨中学高考仿真卷数学试卷(含解析).doc
下载文档

ID:14491

大小:2.29MB

页数:20页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 浙江 诸暨 中学 高考 仿真 数学试卷 解析
2023学年高考数学模拟测试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( ) A. B. C. D. 2.设a=log73,,c=30.7,则a,b,c的大小关系是(  ) A. B. C. D. 3.如图,设为内一点,且,则与的面积之比为 A. B. C. D. 4.若点是角的终边上一点,则( ) A. B. C. D. 5.复数(为虚数单位),则等于( ) A.3 B. C.2 D. 6.下列命题为真命题的个数是( )(其中,为无理数) ①;②;③. A.0 B.1 C.2 D.3 7.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为( ) A. B.2 C. D. 8.已知定义在上的奇函数,其导函数为,当时,恒有.则不等式的解集为( ). A. B. C.或 D.或 9.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A. B. C. D.以上都不对 10.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为( ) A.1 B.2 C.3 D.4 11.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( ) A. B. C. D. 12.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13. “学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有________种. 14.在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_____. 15.不等式对于定义域内的任意恒成立,则的取值范围为__________. 16.已知集合,,则__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知等差数列中,,数列的前项和. (1)求; (2)若,求的前项和. 18.(12分)已知函数(其中是自然对数的底数) (1)若在R上单调递增,求正数a的取值范围; (2)若f(x)在处导数相等,证明:; (3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧). 19.(12分)某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量(单位:亿元)对年销售额(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①,②,其中均为常数,为自然对数的底数. 现该公司收集了近12年的年研发资金投入量和年销售额的数据,,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令,经计算得如下数据: (1)设和的相关系数为,和的相关系数为,请从相关系数的角度,选择一个拟合程度更好的模型; (2)(i)根据(1)的选择及表中数据,建立关于的回归方程(系数精确到0.01); (ii)若下一年销售额需达到90亿元,预测下一年的研发资金投入量是多少亿元? 附:①相关系数,回归直线中斜率和截距的最小二乘估计公式分别为:,; ② 参考数据:,,. 20.(12分)已知数列的各项均为正数,且满足. (1)求,及的通项公式; (2)求数列的前项和. 21.(12分)设函数. (1)当时,求不等式的解集; (2)若恒成立,求的取值范围. 22.(10分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表: x 1 2 3 4 5 y 17.0 16.5 15.5 13.8 12.2 (1)求y关于x的线性回归方程; (2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值? 参考公式: 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得 【题目详解】 抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以. 故选:C 【答案点睛】 本小题主要考查抛物线的弦长的求法,属于基础题. 2、D 【答案解析】 ,,得解. 【题目详解】 ,,,所以,故选D 【答案点睛】 比较不同数的大小,找中间量作比较是一种常见的方法. 3、A 【答案解析】 作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果. 【题目详解】 如图,作交于点, 则,由题意,,,且, 所以 又,所以,,即, 所以本题答案为A. 【答案点睛】 本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键. 4、A 【答案解析】 根据三角函数的定义,求得,再由正弦的倍角公式,即可求解. 【题目详解】 由题意,点是角的终边上一点, 根据三角函数的定义,可得, 则,故选A. 【答案点睛】 本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题. 5、D 【答案解析】 利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解. 【题目详解】 , 所以,, 故选:D. 【答案点睛】 该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目. 6、C 【答案解析】 对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的. 【题目详解】 由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的; 对于②中,设函数,则,所以函数为单调递增函数, 因为,则 又由,所以,即,所以②不正确; 对于③中,设函数,则, 当时,,函数单调递增, 当时,,函数单调递减, 所以当时,函数取得最大值,最大值为, 所以,即,即,所以是正确的. 故选:C. 【答案点睛】 本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题. 7、A 【答案解析】 由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率. 【题目详解】 由题意∵,∴由双曲线定义得,从而得,, 在中,由余弦定理得,化简得. 故选:A. 【答案点睛】 本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式. 8、D 【答案解析】 先通过得到原函数为增函数且为偶函数,再利用到轴距离求解不等式即可. 【题目详解】 构造函数, 则 由题可知,所以在时为增函数; 由为奇函数,为奇函数,所以为偶函数; 又,即 即 又为开口向上的偶函数 所以,解得或 故选:D 【答案点睛】 此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目. 9、A 【答案解析】 首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果. 【题目详解】 不超过的素数有,,,,,,,,共个, 从这个素数中任选个,有种可能; 其中选取的两个数,其和等于的有,,共种情况, 故随机选出两个不同的数,其和等于的概率. 故选:. 【答案点睛】 本题考查古典概型概率问题的求解,属于基础题. 10、B 【答案解析】 设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误. 【题目详解】 解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确; 对于②,连结,,在中,,而,是的中点,所以,②正确; 对于③由②可知,在中,,连结,易知,而在中,,, 即,又,面,平面平面,③正确; 以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系; , ,, , , ; , ; 异面直线与所成角为,,故.④不正确. 故选:. 【答案点睛】 本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力. 11、C 【答案解析】 利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可. 【题目详解】 设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是. 故选:C 【答案点睛】 本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题. 12、C 【答案解析】 几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案. 【题目详解】 几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为. 故选:. 【答案点睛】 本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 先分间隔一个与不间隔分类计数,再根据捆绑法求排列数,最后求和得结果. 【题目详解】 若“阅读文章”与“视听学习”两大学习板块相邻,则学习方法有种; 若“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块的学习方法有种; 因此共有种. 故答案为: 【答案点睛】 本题考查排列组合实际问题,考查基本分析求解能力,属基础题. 14、 【答案解析】 利用导数的几何意义可求得函数在处的切

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开