温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
浙江省
宁波市
慈溪市
高级中学
高考
数学
试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知是定义在上的奇函数,且当时,.若,则的解集是( )
A. B.
C. D.
2.已知直线和平面,若,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.不充分不必要
3.将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为( )
A. B. C. D.
4.是的( )条件
A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要
5.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则( )
A. B.
C. D.
6.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为( )
A.12p B. C. D.10p
7.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )
A. B. C. D.
8.设函数,若函数有三个零点,则( )
A.12 B.11 C.6 D.3
9.已知数列中,,(),则等于( )
A. B. C. D.2
10.已知向量,,则向量在向量上的投影是( )
A. B. C. D.
11.在中,角、、所对的边分别为、、,若,则( )
A. B. C. D.
12.将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin(π﹣α)的值是_____.
14.已知变量,满足约束条件,则的最小值为__________.
15.展开式的第5项的系数为_____.
16.如果抛物线上一点到准线的距离是6,那么______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数u(x)=xlnx,v(x)x﹣1,m∈R.
(1)令m=2,求函数h(x)的单调区间;
(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1•x2的最大值.
18.(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.
(1)求证:平面;
(2)求证:平面.
19.(12分)在中,角的对边分别为,已知.
(1)求角的大小;
(2)若,求的面积.
20.(12分)如图,四棱锥中,平面,,,.
(I)证明:;
(Ⅱ)若是中点,与平面所成的角的正弦值为,求的长.
21.(12分)如图,在平面四边形中,,,.
(1)求;
(2)求四边形面积的最大值.
22.(10分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:
1.08
1.12
1.19
1.28
1.36
1.48
1.59
1.68
1.80
1.87
2.25
2.37
2.40
2.55
2.64
2.75
2.92
3.03
3.14
3.26
(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;
(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)
附注:①参考数据:,,,,.
②参考公式:相关系数,,.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.
【题目详解】
为定义在上的奇函数,.
当时,,,
为奇函数,,
由得:或;
综上所述:若,则的解集为.
故选:.
【答案点睛】
本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.
2、B
【答案解析】
由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.
【题目详解】
,
不能确定还是,
,
当时,存在,,
由
又可得,
所以“”是“”的必要不充分条件,
故选:B
【答案点睛】
本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.
3、B
【答案解析】
根据条件先求出的解析式,结合三角函数的单调性进行求解即可.
【题目详解】
将函数图象上所有点向左平移个单位长度后得到函数的图象,
则,
设,
则当时,,,
即,
要使在区间上单调递减,
则得,得,
即实数的最大值为,
故选:B.
【答案点睛】
本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.
4、B
【答案解析】
利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。
【题目详解】
设对应的集合是,由解得且
对应的集合是 ,所以,
故是的必要不充分条件,故选B。
【答案点睛】
本题主要考查充分条件、必要条件的判断方法——集合关系法。
设 ,
如果,则是的充分条件;如果B则是的充分不必要条件;
如果,则是的必要条件;如果,则是的必要不充分条件。
5、D
【答案解析】
连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案
【题目详解】
连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.
【答案点睛】
本题考查向量的线性运算问题,属于基础题
6、C
【答案解析】
取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,此直三棱柱和三棱锥P−ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径
【题目详解】
如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,
故选:C.
【答案点睛】
此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.
7、B
【答案解析】
试题分析:由题意得,,所以,,所求双曲线方程为.
考点:双曲线方程.
8、B
【答案解析】
画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果.
【题目详解】
作出函数的图象如图所示,
令,
由图可得关于的方程的解有两个或三个(时有三个,时有两个),
所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),
由,可得的值分别为,
则
故选B.
【答案点睛】
本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.
9、A
【答案解析】
分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.
【题目详解】
解:∵,(),
,
,
,
,
…,
∴数列是以3为周期的周期数列,
,
,
故选:A.
【答案点睛】
本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.
10、A
【答案解析】
先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解
【题目详解】
由于向量,
故
向量在向量上的投影是.
故选:A
【答案点睛】
本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.
11、D
【答案解析】
利用余弦定理角化边整理可得结果.
【题目详解】
由余弦定理得:,
整理可得:,.
故选:.
【答案点睛】
本题考查余弦定理边角互化的应用,属于基础题.
12、A
【答案解析】
求出函数的解析式,由函数为偶函数得出的表达式,然后利用充分条件和必要条件的定义判断即可.
【题目详解】
将函数的图象沿轴向左平移个单位长度,得到的图象对应函数的解析式为,
若函数为偶函数,则,解得,
当时,.
因此,“”是“是偶函数”的充分不必要条件.
故选:A.
【答案点睛】
本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
计算sinα,再利用诱导公式计算得到答案.
【题目详解】
由题意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.
故答案为:.
【答案点睛】
本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.
14、-5
【答案解析】
画出,满足的可行域,当目标函数经过点时,最小,求解即可。
【题目详解】
画出,满足的可行域,由解得,当目标函数经过点时,取得最小值为-5.
【答案点睛】
本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想。需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得。
15、70
【答案解析】
根据二项式定理的通项公式,可得结果.
【题目详解】
由题可知:第5项为
故第5项的的系数为
故答案为:70.
【答案点睛】
本题考查的是二项式定理,属基础题。
16、
【答案解析】
先求出抛物线的准线方程,然后根据点到准线的距离为6,列出,直接求出结果.
【题目详解】
抛物线的准线方程为,
由题意得,解得.
∵点在抛物线上,
∴,∴,
故答案为:.
【答案点睛】
本小题主要考查抛物线的定义,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)
【答案解析】
(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出
(2)函数f(x)恰有两个极值点x1,x2,则f′(x)=lnx﹣mx=0有两个正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消参数m化简整理可得ln(x1x2)=ln•,设t,构造函数g(t)=()lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1•x2的最大值.
【题目详解】
(1)令m=2,函数h(x),∴h′(x),
令h′(x)=0,解得x=e,
∴当x∈(0,e)时,h′(x)>0,当x∈(e,+∞)时,h′(x)<0,
∴函数h(x)单调递增区间是(0,e),单调递减区间是(e,+∞)
(2)f(x)=u(x)﹣v(x)=xlnxx+1,
∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,
∵函数f(