温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
江西省
一中
临川二
中高
考考
前提
分数
仿真
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则, , , 的大小关系为( )
A. B.
C. D.
2.已知全集,则集合的子集个数为( )
A. B. C. D.
3.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为( )
A.1 B.2
C.3 D.4
4.已知等差数列的前n项和为,,则
A.3 B.4 C.5 D.6
5. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )
A.75 B.65 C.55 D.45
6.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为( )
A. B. C. D.
7.展开项中的常数项为
A.1 B.11 C.-19 D.51
8.已知角的终边经过点,则
A. B.
C. D.
9.已知(),i为虚数单位,则( )
A. B.3 C.1 D.5
10.设正项等差数列的前项和为,且满足,则的最小值为
A.8 B.16 C.24 D.36
11.已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是( )
A. B.
C. D.
12.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.
对于下列说法:
①越小,则国民分配越公平;
②设劳伦茨曲线对应的函数为,则对,均有;
③若某国家某年的劳伦茨曲线近似为,则;
④若某国家某年的劳伦茨曲线近似为,则.
其中正确的是:
A.①④ B.②③ C.①③④ D.①②④
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数为奇函数,则______.
14.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.
15.执行如图所示的程序框图,则输出的结果是______.
16.设函数 满足,且当时,又函数,则函数在上的零点个数为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知a>0,b>0,a+b=2.
(Ⅰ)求的最小值;
(Ⅱ)证明:
18.(12分)已知函数,其中,.
(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.
(2)若在处取得极大值,求实数a的取值范围.
19.(12分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求直线的直角坐标方程;
(2)若点在曲线上,点在直线上,求的最小值.
20.(12分)设复数满足(为虚数单位),则的模为______.
21.(12分)选修4-5:不等式选讲
设函数.
(1) 证明:;
(2)若不等式的解集非空,求的取值范围.
22.(10分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:
卫生习惯状况类
垃圾处理状况类
体育锻炼状况类
心理健康状况类
膳食合理状况类
作息规律状况类
有效答卷份数
380
550
330
410
400
430
习惯良好频率
0.6
0.9
0.8
0.7
0.65
0.6
假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.
(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;
(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;
(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,,,,,的大小关系.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
因为,所以,
因为,,所以,.
综上;故选D.
2、C
【答案解析】
先求B.再求,求得则子集个数可求
【题目详解】
由题=, 则集合,故其子集个数为
故选C
【答案点睛】
此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题
3、D
【答案解析】
可以是共4个,选D.
4、C
【答案解析】
方法一:设等差数列的公差为,则,解得,所以.故选C.
方法二:因为,所以,则.故选C.
5、B
【答案解析】
计算的和,然后除以,得到“5阶幻方”的幻和.
【题目详解】
依题意“5阶幻方”的幻和为,故选B.
【答案点睛】
本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.
6、D
【答案解析】
根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.
【题目详解】
由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.
【答案点睛】
本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.
7、B
【答案解析】
展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.
【题目详解】
展开式中的项为常数项,有3种情况:
(1)5个括号都出1,即;
(2)两个括号出,两个括号出,一个括号出1,即;
(3)一个括号出,一个括号出,三个括号出1,即;
所以展开项中的常数项为,故选B.
【答案点睛】
本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.
8、D
【答案解析】
因为角的终边经过点,所以,则,
即.故选D.
9、C
【答案解析】
利用复数代数形式的乘法运算化简得答案.
【题目详解】
由,得,解得.
故选:C.
【答案点睛】
本题考查复数代数形式的乘法运算,是基础题.
10、B
【答案解析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.
方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.
11、A
【答案解析】
根据题意,,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.
【题目详解】
已知与的图象有一个横坐标为的交点,
则,
,
,,
,
若函数图象的纵坐标不变,横坐标变为原来的倍, 则,
所以当时,,
在有且仅有5个零点,
,
.
故选:A.
【答案点睛】
本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.
12、A
【答案解析】
对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用奇函数的定义得出,结合对数的运算性质可求得实数的值.
【题目详解】
由于函数为奇函数,则,即,
,整理得,解得.
当时,真数,不合乎题意;
当时,,解不等式,解得或,此时函数的定义域为,定义域关于原点对称,合乎题意.
综上所述,.
故答案为:.
【答案点睛】
本题考查利用函数的奇偶性求参数,考查了函数奇偶性的定义和对数运算性质的应用,考查计算能力,属于中等题.
14、3﹣4i
【答案解析】
计算得到z2=(2+i)2=3+4i,再计算得到答案.
【题目详解】
∵z=2+i,∴z2=(2+i)2=3+4i,则.
故答案为:3﹣4i.
【答案点睛】
本题考查了复数的运算,共轭复数,意在考查学生的计算能力.
15、1
【答案解析】
该程序的功能为利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.
【题目详解】
模拟程序的运行,可得:,,
不满足条件,执行循环体,,,
不满足条件,执行循环体,,,
不满足条件,执行循环体,,,
不满足条件,执行循环体,,,
此时满足条件,退出循环,输出的值为1.
故答案为:1.
【答案点睛】
本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.
16、1
【答案解析】
判断函数为偶函数,周期为2,判断为偶函数,计算,,画出函数图像,根据图像到答案.
【题目详解】
知,函数为偶函数,,函数关于对称。
,故函数为周期为2的周期函数,且。
为偶函数,,,
当时,,,函数先增后减。
当时,,,函数先增后减。
在同一坐标系下作出两函数在上的图像,发现在内图像共有1个公共点,
则函数在上的零点个数为1.
故答案为:.
【答案点睛】
本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)最小值为;(Ⅱ)见解析
【答案解析】
(1)根据题意构造平均值不等式,结合均值不等式可得结果;
(2)利用分析法证明,结合常用不等式和均值不等式即可证明.
【题目详解】
(Ⅰ)
则
当且仅当,即,时,
所以的最小值为.
(Ⅱ)要证明:,
只需证:,
即证明:,
由,
也即证明:.
因为,
所以当且仅当时,有,
即,当时等号成立.
所以
【答案点睛】
本题考查均值不等式,分析法证明不等式,审清题意,仔细计算,属中档题.
18、 (1) 答案见解析(2)
【答案解析】
(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.
【题目详解】
(1)函数的图象不能与x轴相切,理由若下:
.假设函数的图象与x轴相切于
则即
显然,,代入中得,无实数解.
故函数的图象不能与x轴相切.
(2)()
,,
设(),
恒大于零.
在上单调递增.
又,,,
∴存在唯一,使,且
时,时,
①