分享
2023学年浙江省宁波市咸祥中学高考考前模拟数学试题(含解析).doc
下载文档

ID:14430

大小:2.13MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 浙江省 宁波市 中学 高考 考前 模拟 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则( ) A. B. C. D. 2.已知函数在上可导且恒成立,则下列不等式中一定成立的是( ) A.、 B.、 C.、 D.、 3.若向量,,则与共线的向量可以是(  ) A. B. C. D. 4.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( ) A. B. C. D. 5.的二项展开式中,的系数是( ) A.70 B.-70 C.28 D.-28 6.过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,,若,则的最小值是( ) A.1 B.2 C.3 D.4 7.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( ) A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为 C. D.三棱锥P-ABC的侧面积为 8.双曲线的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于(  ) A. B.2 C.3 D.6 9.已知函数,若不等式对任意的恒成立,则实数k的取值范围是( ) A. B. C. D. 10.已知函,,则的最小值为( ) A. B.1 C.0 D. 11.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则( ). A. B. C. D. 12.已知复数满足,且,则( ) A.3 B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知三棱锥中,,,则该三棱锥的外接球的表面积是________. 14.正四面体的一个顶点是圆柱上底面的圆心,另外三个顶点圆柱下底面的圆周上,记正四面体的体积为,圆柱的体积为,则的值是______. 15.已知,则展开式的系数为__________. 16.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A 级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B 级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C 级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D 级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立. (1)求一件手工艺品质量为B级的概率; (2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元. ①求10件手工艺品中不能外销的手工艺品最有可能是多少件; ②记1件手工艺品的利润为X元,求X的分布列与期望. 18.(12分)如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点. (1)证明:; (2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积. 19.(12分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点. (1)求证:. (2)若点在轴的上方,当的面积最小时,求直线的斜率. 附:多项式因式分解公式: 20.(12分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C). (1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由; (2)求直线与平面所成角的正弦值. 21.(12分)我们称n()元有序实数组(,,…,)为n维向量,为该向量的范数.已知n维向量,其中,,2,…,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为. (1)求和的值; (2)当n为偶数时,求,(用n表示). 22.(10分)已知凸边形的面积为1,边长,,其内部一点到边的距离分别为.求证:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比. 【题目详解】 作图,设与的夹角为,则中边上的高与中边上的高之比为,,设,则直线,即,与联立,解得,从而得到面积比为. 故选: 【答案点睛】 解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题. 2、A 【答案解析】 设,利用导数和题设条件,得到,得出函数在R上单调递增, 得到,进而变形即可求解. 【题目详解】 由题意,设,则, 又由,所以,即函数在R上单调递增, 则,即, 变形可得. 故选:A. 【答案点睛】 本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题. 3、B 【答案解析】 先利用向量坐标运算求出向量,然后利用向量平行的条件判断即可. 【题目详解】 故选B 【答案点睛】 本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位. 4、D 【答案解析】 可设的内切圆的圆心为,设,,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值. 【题目详解】 可设的内切圆的圆心为,为切点,且为中点,, 设,,则,且有,解得,, 设,,设圆切于点,则,, 由,解得,, ,所以为等边三角形, 所以,,解得. 因此,该椭圆的离心率为. 故选:D. 【答案点睛】 本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题. 5、A 【答案解析】 试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A. 考点:二项式定理的应用. 6、C 【答案解析】 设直线AB的方程为,代入得:,由根与系数的关系得,,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案. 【题目详解】 根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0, 设直线AB的方程为,代入得:. 由根与系数的关系得,, 所以. 又直线CD的方程为,同理, 所以, 所以.故.过点P作PM垂直于准线,M为垂足, 则由抛物线的定义可得. 所以,当Q,P,M三点共线时,等号成立. 故选:C. 【答案点睛】 本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件. 7、C 【答案解析】 根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得. 【题目详解】 解:根据三视图,可得三棱锥P-ABC的直观图如图所示, 其中D为AB的中点,底面ABC. 所以三棱锥P-ABC的体积为, ,,, ,、不可能垂直, 即不可能两两垂直, ,. 三棱锥P-ABC的侧面积为. 故正确的为C. 故选:C. 【答案点睛】 本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题. 8、A 【答案解析】 由圆心到渐近线的距离等于半径列方程求解即可. 【题目详解】 双曲线的渐近线方程为y=±x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=. 答案:A 【答案点睛】 本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题. 9、A 【答案解析】 先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可. 【题目详解】 当时,,所以函数在处的切线方程为:,令,它与横轴的交点坐标为. 在同一直角坐标系内画出函数和的图象如下图的所示: 利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是. 故选:A 【答案点睛】 本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题. 10、B 【答案解析】 ,利用整体换元法求最小值. 【题目详解】 由已知, 又,,故当,即时,. 故选:B. 【答案点睛】 本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题. 11、B 【答案解析】 根据角终边上的点坐标,求得,代入二倍角公式即可求得的值. 【题目详解】 因为终边上有一点,所以, 故选:B 【答案点睛】 此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目. 12、C 【答案解析】 设,则,利用和求得,即可. 【题目详解】 设,则, 因为,则,所以, 又,即,所以, 所以, 故选:C 【答案点睛】 本题考查复数的乘法法则的应用,考查共轭复数的应用. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果. 【题目详解】 将三棱锥补成长方体,设,,, 设三棱锥的外接球半径为,则, 由勾股定理可得, 上述三个等式全部相加得,, 因此,三棱锥的外接球面积为. 故答案为:. 【答案点睛】 本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题. 14、 【答案解析】 设正四面体的棱长为,求出底面外接圆的半径与高,代入体积公式求解. 【题目详解】 解:设正四面体的棱长为, 则底面积为,底面外接圆的半径为, 高为. ∴正四面体的体积, 圆柱的体积. 则. 故答案为:. 【答案点睛】 本题主要考查多面体与旋转体体积的求法,考查计算能力,属于中档题. 15、 【答案解析】 先根据定积分求出的值,再用二项展开式公

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开