分享
2023学年河南省郑州市中牟县高考数学五模试卷(含解析).doc
下载文档

ID:14409

大小:2.05MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河南省 郑州市 中牟县 高考 数学 试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是( ) A. B. C. D. 2.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( ) A. B. C. D. 3.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( ) A. B. C. D. 4.记等差数列的公差为,前项和为.若,,则( ) A. B. C. D. 5.函数在的图象大致为( ) A. B. C. D. 6.四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是( ) A.12 B.16 C.20 D.8 7.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( ) A. B. C. D. 8.如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则( ) A.1 B. C.2 D.3 9.函数的图象如图所示,则它的解析式可能是( ) A. B. C. D. 10.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为( ) A. B. C. D. 11.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( ) A. B. C. D. 12.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为____. 14.函数f(x)=x2﹣xlnx的图象在x=1处的切线方程为_____. 15.平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中α,β∈R,且α+β=1,则点C的轨迹方程为 16.已知椭圆:的左、右焦点分别为,,如图是过且垂直于长轴的弦,则的内切圆方程是________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,在四棱锥中,底面,,,,为的中点,是上的点. (1)若平面,证明:平面. (2)求二面角的余弦值. 18.(12分)设函数f(x)=|x﹣a|+|x|(a>0). (1)若不等式f(x)﹣| x|≥4x的解集为{x|x≤1},求实数a的值; (2)证明:f(x). 19.(12分)已知数列的前n项和为,且n、、成等差数列,. (1)证明数列是等比数列,并求数列的通项公式; (2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值. 20.(12分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点. (1)求的值及该圆的方程; (2)设为上任意一点,过点作的切线,切点为,证明:. 21.(12分)一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元 (1)求发酵池边长的范围; (2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小. 22.(10分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数. (1)若在区间上是闭函数,求常数的值; (2)找出所有形如的函数(都是常数),使其在区间上是闭函数. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可. 【题目详解】 当时,直线和直线,即直线为和直线互相垂直, 所以“”是直线和直线互相垂直“的充分条件, 当直线和直线互相垂直时,,解得. 所以“”是直线和直线互相垂直“的不必要条件. :“”是直线和直线互相垂直“的充分不必要条件,故是假命题. 当时,没有零点, 所以命题是假命题. 所以是真命题,是假命题,是假命题,是假命题. 故选:. 【答案点睛】 本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象, 考查学生对这些知识的理解掌握水平. 2、D 【答案解析】 如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积. 【题目详解】 如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,. 因为,故, 因为,故. 由正弦定理可得,故,又因为,故. 因为,故平面,所以, 因为平面,平面,故,故, 所以四边形为平行四边形,所以, 所以,故外接球的半径为,外接球的表面积为. 故选:D. 【答案点睛】 本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度. 3、B 【答案解析】 设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率. 【题目详解】 设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点, 由题意可知,直线与直线垂直,,, 因此,双曲线的离心率为. 故选:B. 【答案点睛】 本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题. 4、C 【答案解析】 由,和,可求得,从而求得和,再验证选项. 【题目详解】 因为,, 所以解得, 所以, 所以,,, 故选:C. 【答案点睛】 本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题. 5、C 【答案解析】 先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解. 【题目详解】 函数, 则,所以为奇函数,排除B选项; 当时,,所以排除A选项; 当时,,排除D选项; 综上可知,C为正确选项, 故选:C. 【答案点睛】 本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题. 6、A 【答案解析】 先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案. 【题目详解】 先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种. 故选:A 【答案点睛】 本题考查排列中不相邻问题,常用插空法,属于基础题. 7、A 【答案解析】 设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解. 【题目详解】 设椭圆的长半轴长为,双曲线的长半轴长为 , 由椭圆和双曲线的定义得: , 解得,设, 在中,由余弦定理得: , 化简得, 即. 故选:A 【答案点睛】 本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题. 8、C 【答案解析】 连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表达式中的系数和,即可求出的值. 【题目详解】 连接AO,由O为BC中点可得, , 、、三点共线, , . 故选:C. 【答案点睛】 本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题. 9、B 【答案解析】 根据定义域排除,求出的值,可以排除,考虑排除. 【题目详解】 根据函数图象得定义域为,所以不合题意; 选项,计算,不符合函数图象; 对于选项, 与函数图象不一致; 选项符合函数图象特征. 故选:B 【答案点睛】 此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法. 10、A 【答案解析】 根据题意,分别求出再根据离散型随机变量期望公式进行求解即可 【题目详解】 由题可知,,,则 解得,由可得, 答案选A 【答案点睛】 本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功 11、C 【答案解析】 求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得 【题目详解】 抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以. 故选:C 【答案点睛】 本小题主要考查抛物线的弦长的求法,属于基础题. 12、D 【答案解析】 设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可. 【题目详解】 设圆锥底面圆的半径为,由已知,,解得, 所以圆锥的体积. 故选:D 【答案点睛】 本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 总事件数为, 目标事件:当第一颗骰子为1,2,4,6,具体事件有 ,共8种; 当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种; 所以目标事件共20中,所以。 14、x﹣y=0. 【答案解析】 先将x=1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利用点斜式写出切线方程. 【题目详解】 由题意得. 故切线方程为y﹣1=x﹣1,即x﹣y=0. 故答案为:x﹣y=0. 【答案点睛】 本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题. 15、 【答案解析】 根据向量共线定理得A,B,C三点共线,再根据点斜式得结果 【题目详解】 因为,且α+β=1,所以A,B,C三点共线, 因此点C的轨迹为直线AB: 【答案点睛】 本题考查向量共线定理以及直线点斜式方程,考查基本分析求解能力,属中档题. 16、 【答案解析】 利用公式计算出,其中为的周长,为内切圆半径,再利用圆心到直线AB的距离等于半径可得到圆心坐标. 【题目详解】 由已知,,,,设内切圆的圆心为,半径为,则 ,故有, 解得,由,或(舍),所以的内切圆方程为 . 故答案为:. 【答案点睛】 本题考查椭圆中三角形内切圆的方程问题,涉及到椭圆焦点三角形、椭圆的定义等知识,考查学生的运算能力,是一道中档题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)证明见解析(2) 【答

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开