温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
江西省
赣州市
十二
高考
前提
分数
仿真
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.140 D.120
2.设,满足约束条件,若的最大值为,则的展开式中项的系数为( )
A.60 B.80 C.90 D.120
3.已知是虚数单位,则复数( )
A. B. C.2 D.
4.两圆和相外切,且,则的最大值为( )
A. B.9 C. D.1
5.已知中内角所对应的边依次为,若,则的面积为( )
A. B. C. D.
6.已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为( )
A. B. C. D.
7.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为( )
A. B. C. D.
8.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )
A. B. C. D.
9.已知数列为等比数列,若,且,则( )
A. B.或 C. D.
10.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是( )
A.若,且,则
B.若,且,则
C.若,且,则
D.若,且,则
11.在中,为中点,且,若,则( )
A. B. C. D.
12. “”是“直线与互相平行”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.
14.若实数,满足,则的最小值为__________.
15.已知 ,则_____.
16.已知两个单位向量满足,则向量与的夹角为_____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设,函数.
(1)当时,求在内的极值;
(2)设函数,当有两个极值点时,总有,求实数的值.
18.(12分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1.
(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.
19.(12分)已知椭圆经过点,离心率为.
(1)求椭圆的方程;
(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.
20.(12分)在中,.
(Ⅰ)求角的大小;
(Ⅱ)若,,求的值.
21.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:
分数段
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]
人数
5
15
15
12
3
(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?
合格
不合格
合计
高一新生
12
非高一新生
6
合计
(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.
参考公式及数据:,其中.
22.(10分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.
(1)求一件手工艺品质量为B级的概率;
(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.
①求10件手工艺品中不能外销的手工艺品最有可能是多少件;
②记1件手工艺品的利润为X元,求X的分布列与期望.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.
考点:频率分布直方图及其应用.
2、B
【答案解析】
画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.
【题目详解】
如图所示:画出可行域和目标函数,
,即,故表示直线与截距的倍,
根据图像知:当时,的最大值为,故.
展开式的通项为:,
取得到项的系数为:.
故选:.
【答案点睛】
本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.
3、A
【答案解析】
根据复数的基本运算求解即可.
【题目详解】
.
故选:A
【答案点睛】
本题主要考查了复数的基本运算,属于基础题.
4、A
【答案解析】
由两圆相外切,得出,结合二次函数的性质,即可得出答案.
【题目详解】
因为两圆和相外切
所以,即
当时,取最大值
故选:A
【答案点睛】
本题主要考查了由圆与圆的位置关系求参数,属于中档题.
5、A
【答案解析】
由余弦定理可得,结合可得a,b,再利用面积公式计算即可.
【题目详解】
由余弦定理,得,由,解得,
所以,.
故选:A.
【答案点睛】
本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.
6、B
【答案解析】
根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.
【题目详解】
由题意,设点在第一象限,双曲线的一条渐近线方程为,
所以,,
又以为直径的圆经过点,则,即,解得,,
所以,,即,即,
所以,双曲线的离心率为.
故选:B.
【答案点睛】
本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.
7、A
【答案解析】
求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率.
【题目详解】
不妨设双曲线的一条渐近线与圆交于,
因为,所以圆心到的距离为:,
即,因为,所以解得.
故选A.
【答案点睛】
本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.
8、B
【答案解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案 是正确的,应选答案B。
点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。
9、A
【答案解析】
根据等比数列的性质可得,通分化简即可.
【题目详解】
由题意,数列为等比数列,则,
又,即,
所以,,
.
故选:A.
【答案点睛】
本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.
10、D
【答案解析】
利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.
【题目详解】
解:对于,当,且,则与的位置关系不定,故错;
对于,当时,不能判定,故错;
对于,若,且,则与的位置关系不定,故错;
对于,由可得,又,则故正确.
故选:.
【答案点睛】
本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理. 一般可借助正方体模型,以正方体为主线直观感知并准确判断.
11、B
【答案解析】
选取向量,为基底,由向量线性运算,求出,即可求得结果.
【题目详解】
, ,
,
,,.
故选:B.
【答案点睛】
本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.
12、A
【答案解析】
利用两条直线互相平行的条件进行判定
【题目详解】
当时,直线方程为与,可得两直线平行;
若直线与互相平行,则,解得,
,则“”是“直线与互相平行”的充分不必要条件,故选
【答案点睛】
本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、.
【答案解析】
分析:由题意结合古典概型计算公式即可求得题中的概率值.
详解:由题意可知了,比赛可能的方法有种,
其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,
田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,
结合古典概型公式可得,田忌的马获胜的概率为.
点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.