温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
四川省
绵阳
南山
中学
2023
学年
高考
仿真
数学试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设非零向量,,,满足,,且与的夹角为,则“”是“”的( ).
A.充分非必要条件 B.必要非充分条件
C.充分必要条件 D.既不充分也不必要条件
2.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是( )
A.函数在上单调递增 B.函数的周期是
C.函数的图象关于点对称 D.函数在上最大值是1
3.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于( )
A. B. C.- D.-
4.设全集U=R,集合,则( )
A. B. C. D.
5.如图,在中,,是上一点,若,则实数的值为( )
A. B. C. D.
6.函数满足对任意都有成立,且函数的图象关于点对称,,则的值为( )
A.0 B.2 C.4 D.1
7.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )
A.2或 B.2或 C.或 D.或
8.如图是一个算法流程图,则输出的结果是( )
A. B. C. D.
9.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )
A. B.2 C. D.
10.若集合,,则( )
A. B. C. D.
11.如果实数满足条件,那么的最大值为( )
A. B. C. D.
12.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.
14.过抛物线C:()的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段的中点N且垂直于l的直线与C的准线交于点M,若,则l的斜率为______.
15.已知i为虚数单位,复数,则=_______.
16.在中,,是的角平分线,设,则实数的取值范围是__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知中,,,是上一点.
(1)若,求的长;
(2)若,,求的值.
18.(12分)在锐角中,,,分别是角,,所对的边,的面积,且满足,则的取值范围是( )
A. B. C. D.
19.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).
(1)求椭圆的方程;
(2)已知直线,为椭圆的右顶点. 若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.
20.(12分)已知函数,.
(1)若不等式的解集为,求的值.
(2)若当时,,求的取值范围.
21.(12分)已知抛物线的焦点为,点在抛物线上,,直线过点,且与抛物线交于,两点.
(1)求抛物线的方程及点的坐标;
(2)求的最大值.
22.(10分)己知,函数.
(1)若,解不等式;
(2)若函数,且存在使得成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
利用数量积的定义可得,即可判断出结论.
【题目详解】
解:,,,
解得,,,解得,
“”是“”的充分必要条件.
故选:C.
【答案点睛】
本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题.
2、A
【答案解析】
根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.
【题目详解】
将横坐标缩短到原来的得:
当时,
在上单调递增 在上单调递增,正确;
的最小正周期为: 不是的周期,错误;
当时,,
关于点对称,错误;
当时,
此时没有最大值,错误.
本题正确选项:
【答案点睛】
本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.
3、A
【答案解析】
分析:计算,由z1,是实数得,从而得解.
详解:复数z1=3+4i,z2=a+i,
.
所以z1,是实数,
所以,即.
故选A.
点睛:本题主要考查了复数共轭的概念,属于基础题.
4、A
【答案解析】
求出集合M和集合N,,利用集合交集补集的定义进行计算即可.
【题目详解】
,
,
则,
故选:A.
【答案点睛】
本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.
5、C
【答案解析】
由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.
【题目详解】
由题意及图,,
又,,所以,∴(1﹣m),
又t,所以,解得m,t,
故选C.
【答案点睛】
本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.
6、C
【答案解析】
根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.
【题目详解】
因为函数的图象关于点对称,所以的图象关于原点对称,
所以为上的奇函数.
由可得,故,
故是周期为4的周期函数.
因为,
所以.
因为,故,
所以.
故选:C.
【答案点睛】
本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.
7、A
【答案解析】
根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率.
【题目详解】
设双曲线C的渐近线方程为y=kx,是圆的切线得: ,
得双曲线的一条渐近线的方程为 ∴焦点在x、y轴上两种情况讨论:
①当焦点在x轴上时有:
②当焦点在y轴上时有:
∴求得双曲线的离心率 2或.
故选:A.
【答案点睛】
本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案.
8、A
【答案解析】
执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.
【题目详解】
由题意,执行上述的程序框图:
第1次循环:满足判断条件,;
第2次循环:满足判断条件,;
第3次循环:满足判断条件,;
不满足判断条件,输出计算结果,
故选A.
【答案点睛】
本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.
9、D
【答案解析】
利用复数代数形式的乘除运算化简,再由实部为求得值.
【题目详解】
解:在复平面内所对应的点在虚轴上,
,即.
故选D.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.
10、A
【答案解析】
用转化的思想求出中不等式的解集,再利用并集的定义求解即可.
【题目详解】
解:由集合,解得,
则
故选:.
【答案点睛】
本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.
11、B
【答案解析】
解:当直线过点时,最大,故选B
12、C
【答案解析】
设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.
【题目详解】
设过点作圆 的切线的切点为,
,
所以是中点,,
,
.
故选:C.
【答案点睛】
本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.
【题目详解】
方法1:由题意可知,
由中位线定理可得,设可得,
联立方程
可解得(舍),点在椭圆上且在轴的上方,
求得,所以
方法2:焦半径公式应用
解析1:由题意可知,
由中位线定理可得,即
求得,所以.
【答案点睛】
本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.
14、
【答案解析】
分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,根据抛物线定义和求得,从而求得直线l的倾斜角.
【题目详解】
分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,由抛物线的定义知,,,因为,所以,所以,即直线的倾斜角为,又直线与直线l垂直且直线l的倾斜角为锐角,所以直线l的倾斜角为,.
故答案为:
【答案点睛】
此题考查抛物线的定义,根据已知条件做出辅助线利用抛物线定义和几何关系即可求解,属于较易题目.
15、
【答案解析】
先把复数进行化简,然后利用求模公式可得结果.
【题目详解】
.
故答案为:.
【答案点睛】
本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.
16、
【答案解析】
设,,,由,用面积公式表示面积可得到,利用,即得解.
【题目详解】
设,,,
由得:
,
化简得,
由于,
故.
故答案为:
【答案点睛】
本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1) (2)
【答案解析】
(1)运用三角形面积公式求出的长度,然后再运用余弦定理求出的长.
(2)运用正弦定理分别表示出和,结合已知条件计算出结果.
【题目详解】
(1)由
在中,由余弦定理可得
(2)由已知得
在中,由正弦定理可知
在中,由正弦定理可知
故
【答案点睛】
本题考查了正弦定理、三角形面积公式以及余弦定理,结合三角形熟练运用各公式是解题关键,此类题目是常考题型,能够运用公式进行边角互化,需要掌握解题方法.
18、A
【答案解析】
由正弦定理化简得,解得,进而得到,利用正切的倍角公式求得,根据三角形的面积公式,求得,进而化简,即可求解.
【题目详解】
由题意,在锐角中,满足,
由正弦定理可得,即,
可得,所以,即,
所以,所以,