分享
四川省自贡市衡水一中富顺学校2023学年高三3月份模拟考试数学试题(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
四川省 自贡市 衡水 一中 富顺 学校 2023 学年 月份 模拟考试 数学试题 解析
2023学年高考数学模拟测试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( ) A. B. C. D. 2.已知等边△ABC内接于圆:x2+ y2=1,且P是圆τ上一点,则的最大值是( ) A. B.1 C. D.2 3.设是两条不同的直线,是两个不同的平面,下列命题中正确的是(  ) A.若,,则 B.若,,则 C.若,,则 D.若,,则 4.已知集合.为自然数集,则下列表示不正确的是( ) A. B. C. D. 5.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为(  ) A. B. C.或- D.和- 6.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( ) A. B. C. D. 7.已知数列 中, ,若对于任意的,不等式恒成立,则实数的取值范围为( ) A. B. C. D. 8.已知函数,则的值等于( ) A.2018 B.1009 C.1010 D.2020 9.设a,b都是不等于1的正数,则“”是“”的(  ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 10.已知m为实数,直线:,:,则“”是“”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 11.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是( ) A.椭圆 B.双曲线 C.抛物线 D.圆 12.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知各项均为正数的等比数列的前项积为,,(且),则__________. 14.展开式中,含项的系数为______. 15.已知函数与的图象上存在关于轴对称的点,则的取值范围为_____. 16.某几何体的三视图如图所示(单位:),则该几何体的表面积是______,体积是_____. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)如图,在直角中,,,,点在线段上. (1)若,求的长; (2)点是线段上一点,,且,求的值. 18.(12分)已知分别是的内角的对边,且. (Ⅰ)求. (Ⅱ)若,,求的面积. (Ⅲ)在(Ⅱ)的条件下,求的值. 19.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点. (1)求证:平面; (2)求三棱锥的体积. 20.(12分)设为实数,在极坐标系中,已知圆()与直线相切,求的值. 21.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn. 22.(10分)在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线. (Ⅰ)求的方程; (Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论. 【题目详解】 由题意,设,则,即小正六边形的边长为, 所以,,,在中, 由余弦定理得, 即,解得, 所以,大正六边形的边长为, 所以,小正六边形的面积为, 大正六边形的面积为, 所以,此点取自小正六边形的概率. 故选:D. 【答案点睛】 本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题. 2、D 【答案解析】 如图所示建立直角坐标系,设,则,计算得到答案. 【题目详解】 如图所示建立直角坐标系,则,,,设, 则 . 当,即时等号成立. 故选:. 【答案点睛】 本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键. 3、C 【答案解析】 在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或. 【题目详解】 设是两条不同的直线,是两个不同的平面,则: 在A中,若,,则与相交或平行,故A错误; 在B中,若,,则或,故B错误; 在C中,若,,则由线面垂直的判定定理得,故C正确; 在D中,若,,则与平行或,故D错误. 故选C. 【答案点睛】 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题. 4、D 【答案解析】 集合.为自然数集,由此能求出结果. 【题目详解】 解:集合.为自然数集, 在A中,,正确; 在B中,,正确; 在C中,,正确; 在D中,不是的子集,故D错误. 故选:D. 【答案点睛】 本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题. 5、C 【答案解析】 直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),可以发现∠QOx的大小,求得结果. 【题目详解】 如图,直线过定点(0,1), ∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°, ∴由对称性可知k=±. 故选C. 【答案点睛】 本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题. 6、B 【答案解析】 由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率. 【题目详解】 如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和. 故选:B 【答案点睛】 此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题. 7、B 【答案解析】 先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案. 【题目详解】 由题, 即 由累加法可得: 即 对于任意的,不等式恒成立 即 令 可得且 即 可得或 故选B 【答案点睛】 本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题. 8、C 【答案解析】 首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三角函数的周期性确定其值即可. 【题目详解】 解: . , , 的周期为, ,, ,, . . 故选:C 【答案点睛】 本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题. 9、C 【答案解析】 根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可. 【题目详解】 由“”,得, 得或或, 即或或, 由,得, 故“”是“”的必要不充分条件, 故选C. 【答案点睛】 本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题. 10、A 【答案解析】 根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可. 【题目详解】 当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立, 当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件. 当m≠0时,则l1∥l2⇒, 由得m2﹣3m+2=0得m=1或m=2, 由得m≠2,则m=1, 即“m=1”是“l1∥l2”的充要条件, 故答案为:A 【答案点睛】 (1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合. 11、B 【答案解析】 根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可. 【题目详解】 因为线段的垂直平分线与直线相交于点,如下图所示: 所以有,而是中点,连接,故, 因此 当在如下图所示位置时有,所以有,而是中点,连接, 故,因此, 综上所述:有,所以点的轨迹是双曲线. 故选:B 【答案点睛】 本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想. 12、B 【答案解析】 由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解. 【题目详解】 平面,底面是边长为2的正方形, 如图建立空间直角坐标系,由题意: ,,,,, 为的中点,. ,, , 异面直线与所成角的余弦值为即为. 故选:B. 【答案点睛】 本题考查了空间向量的应用,考查了空间想象能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 利用等比数列的性质求得,进而求得,再利用对数运算求得的值. 【题目详解】 由于,,所以,则,∴,,. 故答案为: 【答案点睛】 本小题主要考查等比数列的性质,考查对数运算,属于基础题. 14、2 【答案解析】 变换得到,展开式的通项为,计算得到答案. 【题目详解】 ,的展开式的通项为:. 含项的系数为:. 故答案为:. 【答案点睛】 本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力. 15、 【答案解析】 两函数图象上存在关于轴对称的点的等价命题是方程在区间上有解,化简方程在区间上有解,构造函数,求导,求出单调区间,利用函数性质得解. 【题目详解】 解:根据题意,若函数与的图象上存在关于轴对称的点, 则方程在区间上有解, 即方程在区间上有解, 设函数,其导数, 又由,可得:当时, 为减函数, 当时, 为增函数, 故函数有最小值, 又由;比较可得: , 故函数有最大值, 故函数在区间上的值域为; 若方程在区间上有解, 必有,则有, 即的取值范围是; 故答案为:; 【答案点睛】 本题利用导数研究函数在某区间上最值求参数的问题, 函数零点问题的拓展. 由于函数的零点就是方程的根,在研究方程的有关问题时,可以将方程问题转化为函数问题解决. 此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决. 16、,. 【答案解

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开