温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
拉萨市
高考
考前
模拟
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数,若,则a的取值范围为( )
A. B. C. D.
2.定义在上的函数与其导函数的图象如图所示,设为坐标原点,、、、四点的横坐标依次为、、、,则函数的单调递减区间是( )
A. B. C. D.
3.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是( )
A. B. C. D.
4.已知非零向量满足,若夹角的余弦值为,且,则实数的值为( )
A. B. C.或 D.
5.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )
A.12种 B.24种 C.36种 D.48种
6.已知函数则函数的图象的对称轴方程为( )
A. B.
C. D.
7.已知无穷等比数列的公比为2,且,则( )
A. B. C. D.
8.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为( )
A. B. C. D.
9.设,且,则( )
A. B. C. D.
10.一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )
A. B. C. D.
11.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( )
A.方差 B.中位数 C.众数 D.平均数
12.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设复数满足,其中是虚数单位,若是的共轭复数,则____________.
14.设,分别是定义在上的奇函数和偶函数,且,则_________
15.已知函数,若函数有6个零点,则实数的取值范围是_________.
16.如果函数(,且,)在区间上单调递减,那么的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.
(1)求抛物线的方程;
(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.
18.(12分)在平面直角坐标系中,曲线的参数方程为:(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于,两点,与曲线交于,两点,求取得最大值时直线的直角坐标方程.
19.(12分)在中,a,b,c分别是角A,B,C的对边,并且.
(1)已知_______________,计算的面积;
请①,②,③这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.
(2)求的最大值.
20.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:
分数段
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]
人数
5
15
15
12
3
(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?
合格
不合格
合计
高一新生
12
非高一新生
6
合计
(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.
参考公式及数据:,其中.
21.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)若射线的极坐标方程为().设与相交于点,与相交于点,求.
22.(10分)已知函数,,.函数的导函数在上存在零点.
求实数的取值范围;
若存在实数,当时,函数在时取得最大值,求正实数的最大值;
若直线与曲线和都相切,且在轴上的截距为,求实数的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.
【题目详解】
由得,
在时,是增函数,是增函数,是增函数,∴是增函数,
∴由得,解得.
故选:C.
【答案点睛】
本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.
2、B
【答案解析】
先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.
【题目详解】
若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;
若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交点,合乎题意.
对函数求导得,由得,
由图象可知,满足不等式的的取值范围是,
因此,函数的单调递减区间为.
故选:B.
【答案点睛】
本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.
3、A
【答案解析】
根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.
【题目详解】
程序框图共运行3次,输出的的范围是,
所以输出的不小于103的概率为.
故选:A.
【答案点睛】
本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.
4、D
【答案解析】
根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.
【题目详解】
依题意,得,即.
将代入可得,,
解得(舍去).
故选:D.
【答案点睛】
本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.
5、C
【答案解析】
先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.
【题目详解】
把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。
故选:C.
【答案点睛】
本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.
6、C
【答案解析】
,将看成一个整体,结合的对称性即可得到答案.
【题目详解】
由已知,,令,得.
故选:C.
【答案点睛】
本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.
7、A
【答案解析】
依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。
【题目详解】
因为无穷等比数列的公比为2,则无穷等比数列的公比为。
由有,,解得,所以,
,故选A。
【答案点睛】
本题主要考查无穷等比数列求和公式的应用。
8、D
【答案解析】
由题意,设每一行的和为,可得,继而可求解,表示,裂项相消即可求解.
【题目详解】
由题意,设每一行的和为
故
因此:
故
故选:D
【答案点睛】
本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
9、C
【答案解析】
将等式变形后,利用二次根式的性质判断出,即可求出的范围.
【题目详解】
即
故选:C
【答案点睛】
此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.
10、B
【答案解析】
由三视图确定原几何体是正三棱柱,由此可求得体积.
【题目详解】
由题意原几何体是正三棱柱,.
故选:B.
【答案点睛】
本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.
11、A
【答案解析】
通过方差公式分析可知方差没有改变,中位数、众数和平均数都发生了改变.
【题目详解】
由题可知,中位数和众数、平均数都有变化.
本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,
根据方差公式可知方差不变.
故选:A
【答案点睛】
本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.
12、A
【答案解析】
求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率.
【题目详解】
不妨设双曲线的一条渐近线与圆交于,
因为,所以圆心到的距离为:,
即,因为,所以解得.
故选A.
【答案点睛】
本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由于,则.
14、1
【答案解析】
令,结合函数的奇偶性,求得,即可求解的值,得到答案.
【题目详解】
由题意,函数分别是上的奇函数和偶函数,且,
令,可得,
所以.
故答案为:1.
【答案点睛】
本题主要考查了函数奇偶性的应用,其中解答中熟记函数的奇偶性,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.
15、
【答案解析】
由题意首先研究函数的性质,然后结合函数的性质数形结合得到关于a的不等式,求解不等式即可确定实数a的取值范