温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
河北省
张家口
第一
中学
高考
压轴
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )
A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著
B.从2014年到2018年这5年,高铁运营里程与年价正相关
C.2018年高铁运营里程比2014年高铁运营里程增长80%以上
D.从2014年到2018年这5年,高铁运营里程数依次成等差数列
2.在菱形中,,,,分别为,的中点,则( )
A. B. C.5 D.
3.已知函数,则( )
A. B. C. D.
4.若复数z满足,则复数z在复平面内对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于( )
A. B. C.- D.-
6.已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则( )
A.2或 B.3或 C.4或 D.5或
7.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是( )
A. B. C. D.
8.已知复数满足,(为虚数单位),则( )
A. B. C. D.3
9.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )
A. B. C. D.
10.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是( )
A.2017年第一季度GDP增速由高到低排位第5的是浙江省.
B.与去年同期相比,2017年第一季度的GDP总量实现了增长.
C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个
D.去年同期河南省的GDP总量不超过4000亿元.
11.已知数列对任意的有成立,若,则等于( )
A. B. C. D.
12.己知,,,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知不等式的解集不是空集,则实数的取值范围是 ;若不等式对任意实数恒成立,则实数的取值范围是___
14.已知数列与均为等差数列(),且,则______.
15.已知复数(为虚数单位),则的模为____.
16.若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:
①为的重心;
②;
③当时,平面;
④当三棱锥的体积最大时,三棱锥外接球的表面积为.
其中,所有正确结论的序号是________________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且 .
(1)求点的坐标;
(2)求的取值范围.
18.(12分)在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4sin(θ+).
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C交于M,N两点,求△MON的面积.
19.(12分)已知函数.
(1)若函数在上单调递减,求实数的取值范围;
(2)若,求的最大值.
20.(12分)在四棱椎中,四边形为菱形,,,,,,分别为,中点..
(1)求证:;
(2)求平面与平面所成锐二面角的余弦值.
21.(12分)已知函数.
(Ⅰ)已知是的一个极值点,求曲线在处的切线方程
(Ⅱ)讨论关于的方程根的个数.
22.(10分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.
求椭圆的方程;
已知是椭圆的内接三角形,
①若点为椭圆的上顶点,原点为的垂心,求线段的长;
②若原点为的重心,求原点到直线距离的最小值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
由折线图逐项分析即可求解
【题目详解】
选项,显然正确;
对于,,选项正确;
1.6,1.9,2.2,2.5,2.9不是等差数列,故错.
故选:D
【答案点睛】
本题考查统计的知识,考查数据处理能力和应用意识,是基础题
2、B
【答案解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.
【题目详解】
设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,
则,,,,,
所以.
故选:B.
【答案点睛】
本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.
3、A
【答案解析】
根据分段函数解析式,先求得的值,再求得的值.
【题目详解】
依题意,.
故选:A
【答案点睛】
本小题主要考查根据分段函数解析式求函数值,属于基础题.
4、A
【答案解析】
化简复数,求得,得到复数在复平面对应点的坐标,即可求解.
【题目详解】
由题意,复数z满足,可得,
所以复数在复平面内对应点的坐标为位于第一象限
故选:A.
【答案点睛】
本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.
5、A
【答案解析】
分析:计算,由z1,是实数得,从而得解.
详解:复数z1=3+4i,z2=a+i,
.
所以z1,是实数,
所以,即.
故选A.
点睛:本题主要考查了复数共轭的概念,属于基础题.
6、C
【答案解析】
先根据弦长求出直线的斜率,再利用抛物线定义可求出.
【题目详解】
设直线的倾斜角为,则,
所以,,即,
所以直线的方程为.当直线的方程为,
联立,解得和,所以;
同理,当直线的方程为.,综上,或.选C.
【答案点睛】
本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.
7、A
【答案解析】
=,当时时,单调递减,时,单调递增,且当,当, 当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.
8、A
【答案解析】
,故,故选A.
9、C
【答案解析】
如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.
考点:外接球表面积和椎体的体积.
10、C
【答案解析】
利用图表中的数据进行分析即可求解.
【题目详解】
对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确;
对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确;
对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误;
对于D选项:去年同期河南省的GDP总量,故D正确.
故选:C.
【答案点睛】
本题考查了图表分析,学生的分析能力,推理能力,属于基础题.
11、B
【答案解析】
观察已知条件,对进行化简,运用累加法和裂项法求出结果.
【题目详解】
已知,则,所以有,
,
,
,两边同时相加得,又因为,所以.
故选:
【答案点睛】
本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.
12、B
【答案解析】
先将三个数通过指数,对数运算变形,再判断.
【题目详解】
因为,,
所以,
故选:B.
【答案点睛】
本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
利用绝对值的几何意义,确定出的最小值,然后根据题意即可得到的取值范围
化简不等式,求出 的最大值,然后求出结果
【题目详解】
的最小值为,则要使不等式的解集不是空集,则有
化简不等式有 ,
即
而
当时满足题意,解得或
所以答案为
【答案点睛】
本题主要考查的是函数恒成立的问题和绝对值不等式,要注意到绝对值的几何意义,数形结合来解答本题,注意去绝对值时的分类讨论化简
14、20
【答案解析】
设等差数列的公差为,由数列为等差数列,且,根据等差中项的性质可得,
,解方程求出公差,代入等差数列的通项公式即可求解.
【题目详解】
设等差数列的公差为,
由数列为等差数列知,,
因为,所以,
解得,所以数列的通项公式为
,
所以.
故答案为:
【答案点睛】
本题考查等差数列的概念及其通项公式和等差中项;考查运算求解能力;等差中项的运用是求解本题的关键;属于基础题.
15、
【答案解析】
,所以.
16、①②③
【答案解析】
①点在平面内的正投影为点,而正方体的体对角线与和它不相交的的面对角线垂直,所以直线垂直于平面,而为正三角形,可得为正三角形的重心,所以①是正确的;
②取的中点,连接,则点在平面的正投影在上,记为,而平面平面,所以,所以②正确;
③若设,则由可得,然后对应边成比例,可解,所以③正确;
④由于,而的面积是定值,所以当点到平面的距离最大时,三棱锥的体积最大,而当点与点重合时,点到平面的距离最大,此时为棱长为的正四面体,其外接球半径,则球,所以④错误.
【题目详解】
因为,连接,则有平面平面为正三角形,所以为正三角形的中心,也是的重心,所以①正确;
由平面,可知平面平面,记,
由,可得平面平面,则,所以②正确;
若平面,则,设由得,易得,由,则,由得,,解得,所以③正确;
当与重合时,最大,为棱长为的正四面体,其外接球半径,则球,所以④错误.
故答案为:①②③
【答案点睛】
此题考查立体几何中的垂直、平行关系,求几何体的体积,考查空间想象能力和推理能力,属于难题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2).
【答案解析】
(1)设出的坐标,代入,结合在抛物线上,求得两点的横坐标,进而求得点的坐标.
(2)设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,结合,求得的表