温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
四川省
成都市
重点中学
2023
学年
高考
仿真
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( )
A.甲 B.乙 C.丙 D.丁
2.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为
A.96 B.84 C.120 D.360
3.圆心为且和轴相切的圆的方程是( )
A. B.
C. D.
4.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为( )
A. B. C. D.
5.在中所对的边分别是,若,则( )
A.37 B.13 C. D.
6.设,点,,,,设对一切都有不等式 成立,则正整数的最小值为( )
A. B. C. D.
7.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( )
A. B. C. D.
8.若复数满足,则( )
A. B. C. D.
9.已知为定义在上的奇函数,且满足当时,,则( )
A. B. C. D.
10.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )
A. B. C. D.
11.集合的子集的个数是( )
A.2 B.3 C.4 D.8
12.已知实数集,集合,集合,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.
14.已知数列满足对任意,,则数列的通项公式__________.
15.已知函数,,若函数有3个不同的零点x1,x2,x3(x1<x2<x3),则的取值范围是_________.
16.已知函数,则过原点且与曲线相切的直线方程为____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.
(1)求p的值;
(2)求证:数列{an}为等比数列;
(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.
18.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:
月份
1月
2月
3月
4月
5月
6月
7月
8月
月养殖量/千只3
3
4
5
6
7
9
10
12
月利润/十万元
3.6
4.1
4.4
5.2
6.2
7.5
7.9
9.1
生猪死亡数/只
29
37
49
53
77
98
126
145
(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;
(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).
(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?
附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,
参考数据:.
19.(12分)如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.
求证:(1)直线平面EFG;
(2)直线平面SDB.
20.(12分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.
(1)证明:平面;
(2)求二面角的余弦值.
21.(12分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,.
(1)求椭圆的方程;
(2)延长分别交椭圆于点(不重合).设,求的最小值.
22.(10分)随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:
考试情况
男学员
女学员
第1次考科目二人数
1200
800
第1次通过科目二人数
960
600
第1次未通过科目二人数
240
200
若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.
(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;
(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
可采用假设法进行讨论推理,即可得到结论.
【题目详解】
由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,
丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;
假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,
乙:丙抓到了,丙:丁抓到了是假的,成立,
所以可以断定值班人是甲.
故选:A.
【答案点睛】
本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.
2、B
【答案解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.
3、A
【答案解析】
求出所求圆的半径,可得出所求圆的标准方程.
【题目详解】
圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.
故选:A.
【答案点睛】
本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.
4、B
【答案解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.
【题目详解】
建立如图所示的平面直角坐标系,则D(0,0).
不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),
∴(-2,2)=λ(-2,1)+μ(1,2),
解得则.
故选:B
【答案点睛】
本题主要考查了由平面向量线性运算的结果求参数,属于中档题.
5、D
【答案解析】
直接根据余弦定理求解即可.
【题目详解】
解:∵,
∴,
∴,
故选:D.
【答案点睛】
本题主要考查余弦定理解三角形,属于基础题.
6、A
【答案解析】
先求得,再求得左边的范围,只需,利用单调性解得t的范围.
【题目详解】
由题意知sin,∴,
∴,随n的增大而增大,∴,
∴,即,又f(t)=在t上单增,f(2)= -1<0,f(3)=2>0,
∴正整数的最小值为3.
【答案点睛】
本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.
7、D
【答案解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.
【题目详解】
3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.
故选:D.
【答案点睛】
本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.
8、C
【答案解析】
化简得到,,再计算复数模得到答案.
【题目详解】
,故,
故,.
故选:.
【答案点睛】
本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.
9、C
【答案解析】
由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.
【题目详解】
由题意,,则函数的周期是,
所以,,
又函数为上的奇函数,且当时,,
所以,.
故选:C.
【答案点睛】
本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.
10、B
【答案解析】
设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.
【题目详解】
设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,
由题意可知,直线与直线垂直,,,
因此,双曲线的离心率为.
故选:B.
【答案点睛】
本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.
11、D
【答案解析】
先确定集合中元素的个数,再得子集个数.
【题目详解】
由题意,有三个元素,其子集有8个.
故选:D.
【答案点睛】
本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.
12、A
【答案解析】
可得集合,求出补集,再求出即可.
【题目详解】
由,得,即,
所以,
所以.
故选:A
【答案点睛】
本题考查了集合的补集和交集的混合运算,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、20,21
【答案解析】
由题意知数列奇数项和偶数项分别为等差数列和等比数列,则根据为奇数和为偶数分别算出求和公式,代入数值检验即可.
【题目详解】
解: 由题意知数列的奇数项构成公差为的等差数列,
偶数项构成公比为的等比数列,
则;
.
当时, ,.
当时, ,.
由此可知,满足的正整数的所有取值为20,21.
故答案为: 20,21
【答案点睛】
本题考查等差数列与等比数列通项与求和公式,是综合题,分清奇数项和偶数项是解题的关键.
14、
【答案解析】
利用累加法求得数列的通项公式,由此求得的通项公式.
【题目详解】
由题,
所以
故答案为:
【答案点睛】
本小题主要考查累加法求数列的通项公式,属于基础题.
15、
【答案解析】
先根据题意,求出的解得或,然后求出f(x)的导函数,求其单调性以及最值,在根据题意求出函数有3个不同的零点x1,x2,x3(x1<x2