分享
2023学年河北省行唐县第三中学高考全国统考预测密卷数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河北省 行唐县 第三中学 高考 全国 统考 预测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. “一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( ) A.这五年,出口总额之和比进口总额之和大 B.这五年,2015年出口额最少 C.这五年,2019年进口增速最快 D.这五年,出口增速前四年逐年下降 2.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是( ) A. B. C. D. 3.下列判断错误的是( ) A.若随机变量服从正态分布,则 B.已知直线平面,直线平面,则“”是“”的充分不必要条件 C.若随机变量服从二项分布: , 则 D.是的充分不必要条件 4.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.函数的图象可能是下面的图象( ) A. B. C. D. 6.如图,在三棱锥中,平面,,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为( ) A. B. C. D. 7.已知集合,,则中元素的个数为( ) A.3 B.2 C.1 D.0 8.设,是非零向量,若对于任意的,都有成立,则 A. B. C. D. 9.已知全集,集合,,则( ) A. B. C. D. 10.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 11.双曲线的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于(  ) A. B.2 C.3 D.6 12.已知函数的值域为,函数,则的图象的对称中心为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知函数为奇函数,,且与图象的交点为,,…,,则______. 14.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________. 15.在中,角,,的对边长分别为,,,满足,,则的面积为__. 16.已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,. (1)求证:平面; (2)求证:. 18.(12分)如图,四棱锥的底面中,为等边三角形,是等腰三角形,且顶角,,平面平面,为中点. (1)求证:平面; (2)若,求二面角的余弦值大小. 19.(12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米. (1)求出易倒伏玉米茎高的中位数; (2)根据茎叶图的数据,完成下面的列联表: 抗倒伏 易倒伏 矮茎 高茎 (3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关? 附:, 0.050 0.010 0.001 3.841 6.635 10.828 20.(12分)如图所示,在四棱锥中,∥,,点分别为的中点. (1)证明:∥面; (2)若,且,面面,求二面角的余弦值. 21.(12分)如图,四棱锥中,底面为直角梯形,,,,,在锐角中,E是边PD上一点,且. (1)求证:平面ACE; (2)当PA的长为何值时,AC与平面PCD所成的角为? 22.(10分)已知圆,定点 ,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线 (1)求曲线的方程 (2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据统计图中数据的含义进行判断即可. 【题目详解】 对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确; 对B项,由统计图可得,2015年出口额最少,则B正确; 对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确; 对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误; 故选:D 【答案点睛】 本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题. 2、B 【答案解析】 由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果. 【题目详解】 点的坐标满足方程, 在圆上, 在坐标满足方程, 在圆上, 则作出两圆的图象如图, 设两圆内公切线为与, 由图可知, 设两圆内公切线方程为, 则, 圆心在内公切线两侧,, 可得,, 化为,, 即, , 的取值范围,故选B. 【答案点睛】 本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解. 3、D 【答案解析】 根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解. 【题目详解】 对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意; 对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意; 对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意; 对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立. 因而是的既不充分也不必要条件,故选项不正确,符合题意. 故选:D 【答案点睛】 本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题. 4、A 【答案解析】 试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断. 解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β, 则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立, ∴“α∥β是“l∥β”的充分不必要条件. 故选A. 考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定. 5、C 【答案解析】 因为,所以函数的图象关于点(2,0)对称,排除A,B.当时,,所以,排除D.选C. 6、A 【答案解析】 根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率. 【题目详解】 由已知平面,,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为. 故选:A. 【答案点睛】 本题考查古典概型概率,解题关键是求出基本事件的个数. 7、C 【答案解析】 集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数. 【题目详解】 由题可知:集合表示半圆上的点,集合表示直线上的点, 联立与, 可得,整理得, 即, 当时,,不满足题意; 故方程组有唯一的解. 故. 故选:C. 【答案点睛】 本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题. 8、D 【答案解析】 画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果. 【题目详解】 由题意,得向量是所有向量中模长最小的向量,如图, 当,即时,最小,满足,对于任意的, 所以本题答案为D. 【答案点睛】 本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题. 9、B 【答案解析】 直接利用集合的基本运算求解即可. 【题目详解】 解:全集,集合,, 则, 故选:. 【答案点睛】 本题考查集合的基本运算,属于基础题. 10、C 【答案解析】 根据等比数列的性质以及充分条件和必要条件的定义进行判断即可. 【题目详解】 解:若{an}是等比数列,则, 若,则,即成立, 若成立,则,即, 故“”是“”的充要条件, 故选:C. 【答案点睛】 本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键. 11、A 【答案解析】 由圆心到渐近线的距离等于半径列方程求解即可. 【题目详解】 双曲线的渐近线方程为y=±x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=. 答案:A 【答案点睛】 本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题. 12、B 【答案解析】 由值域为确定的值,得,利用对称中心列方程求解即可 【题目详解】 因为,又依题意知的值域为,所以 得,, 所以,令,得,则的图象的对称中心为. 故选:B 【答案点睛】 本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为0 二、填空题:本题共4小题,每小题5分,共20分。 13、18 【答案解析】 由题意得函数f(x)与g(x)的图像都关于点对称,结合函数的对称性进行求解即可. 【题目详解】 函数为奇函数,函数关于点对称,,函数关于点对称,所以两个函数图象的交点也关于点(1,2)对称,与图像的交点为,,…,,两两关于点对称, . 故答案为:18 【答案点睛】 本题考查了函数

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开