温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
四川省
树德
中学
2023
学年
最后
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若数列满足且,则使的的值为( )
A. B. C. D.
2.已知复数是纯虚数,其中是实数,则等于( )
A. B. C. D.
3.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( )
A.平均数为20,方差为4 B.平均数为11,方差为4
C.平均数为21,方差为8 D.平均数为20,方差为8
4.已知复数,若,则的值为( )
A.1 B. C. D.
5.已知函数,若恒成立,则满足条件的的个数为( )
A.0 B.1 C.2 D.3
6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )
A. B.6 C. D.
7.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( )
A.60种 B.70种 C.75种 D.150种
8.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.3 C. D.4
9.函数(, , )的部分图象如图所示,则的值分别为( )
A.2,0 B.2, C.2, D.2,
10.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是( )
A. B. C. D.
11.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( )
A. B. C. D.
12.已知数列,,,…,是首项为8,公比为得等比数列,则等于( )
A.64 B.32 C.2 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.如图所示,点,B均在抛物线上,等腰直角的斜边为BC,点C在x轴的正半轴上,则点B的坐标是________.
14.已知函数有且只有一个零点,则实数的取值范围为__________.
15.设变量,满足约束条件,则目标函数的最小值为______.
16.已知函数图象上一点处的切线方程为,则_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为.若直线交曲线于,两点,求线段的长.
18.(12分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:
卫生习惯状况类
垃圾处理状况类
体育锻炼状况类
心理健康状况类
膳食合理状况类
作息规律状况类
有效答卷份数
380
550
330
410
400
430
习惯良好频率
0.6
0.9
0.8
0.7
0.65
0.6
假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.
(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;
(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;
(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,,,,,的大小关系.
19.(12分)已知函数,其中为自然对数的底数.
(1)若函数在区间上是单调函数,试求的取值范围;
(2)若函数在区间上恰有3个零点,且,求的取值范围.
20.(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:
满意
不满意
男
女
是否有的把握认为顾客购物体验的满意度与性别有关?
若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.
附表及公式:.
21.(12分)本小题满分14分)
已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段的长度
22.(10分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1.
(1)求椭圆的方程;
(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.
2、A
【答案解析】
对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.
【题目详解】
因为为纯虚数,所以,得
所以.
故选A项
【答案点睛】
本题考查复数的四则运算,纯虚数的概念,属于简单题.
3、D
【答案解析】
由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.
【题目详解】
样本的平均数是10,方差为2,
所以样本的平均数为,方差为.
故选:D.
【答案点睛】
样本的平均数是,方差为,则的平均数为,方差为.
4、D
【答案解析】
由复数模的定义可得:,求解关于实数的方程可得:.
本题选择D选项.
5、C
【答案解析】
由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.
【题目详解】
①当时,,满足题意,
②当时,,,,,故不恒成立,
③当时,设,,
令,得,,得,
下面考查方程的解的个数,
设(a),则(a)
由导数的应用可得:
(a)在为减函数,在,为增函数,
则(a),
即有一解,
又,均为增函数,
所以存在1个使得成立,
综合①②③得:满足条件的的个数是2个,
故选:.
【答案点睛】
本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.
6、D
【答案解析】
用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.
【题目详解】
执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.
故选D.
【答案点睛】
本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.
7、C
【答案解析】
根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案.
【题目详解】
解:根据题意,从6名男干部中选出2名男干部,有种取法,
从5名女干部中选出1名女干部,有种取法,
则有种不同的选法;
故选:C.
【答案点睛】
本题考查排列组合的应用,涉及分步计数原理问题,属于基础题.
8、C
【答案解析】
首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.
【题目详解】
解:根据几何体的三视图转换为几何体为:
该几何体为由一个三棱柱体,切去一个三棱锥体,
如图所示:
故:.
故选:C.
【答案点睛】
本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.
9、D
【答案解析】
由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案
【题目详解】
由函数图象可知:
,
函数的图象过点
,
,则
故选
【答案点睛】
本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果
10、A
【答案解析】
先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.
【题目详解】
的图象向右平移个单位长度,
所得图象对应的函数解析式为,
故.
令,,解得,.
因为为偶函数,故直线为其图象的对称轴,
令,,故,,
因为,故,当时,.
故选:A.
【答案点睛】
本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题.
11、C
【答案解析】
求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程
在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.
【题目详解】
依题意,,
令,解得,,故当时,,
当,,且,
故方程在上有两个不同的实数根,
故,
解得.
故选:C.
【答案点睛】
本题考查确定函数零点或方程根个数.其方法:
(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;
(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.
12、A
【答案解析】
根据题意依次计算得到答案.
【题目详解】
根据题意知:,,故,,.
故选:.
【答案点睛】
本题考查了数列值的计算,意在考查学生的计算能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设出两点的坐标,结合抛物线方程、两条直线垂直的条件以及两点间的距离公式列方程,解方程求得的坐标.
【题目详解】
设,由于在抛物线上,所以.由于三角形是等腰直角三角形,,所以.由得,化为,可得,所以,解得,则.所以.
故答案为:
【答案点睛】
本题考查抛物线的方程和运用,考查方程思想和运算能力,属于中档题.
14、
【答案解析】
当时,转化条件得有唯一实数根,令,通过求导得到的单调性后数形结合即可得解.
【题目详解】
当时,,故不是函数的零点;
当时,即,
令,,
,
当时,;当时,,
的单调减区间为,增区间为,
又 ,可作出的草图,如图:
则要使有唯一实数根,则.
故答案为:.
【答案点睛】
本题考查了导数的应用,考查了转化化归思想和数形结合思想,属于难题.
15、-8
【答案解析】
通过约束条件,画出可行域,将问题转化为直线在