分享
四川省宜宾第三中学2023学年高三3月份模拟考试数学试题(含解析).doc
下载文档

ID:14244

大小:1.71MB

页数:18页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
四川省 宜宾 第三中学 2023 学年 月份 模拟考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设全集,集合,,则( ) A. B. C. D. 2.的展开式中的系数为( ) A.5 B.10 C.20 D.30 3.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为 A. B. C. D. 4.已知集合,,若,则的最小值为( ) A.1 B.2 C.3 D.4 5.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有 ( ) A.3个 B.4个 C.5个 D.6个 6.若数列为等差数列,且满足,为数列的前项和,则( ) A. B. C. D. 7.已知函数,则不等式的解集是( ) A. B. C. D. 8.函数的一个零点在区间内,则实数a的取值范围是( ) A. B. C. D. 9.设函数,若在上有且仅有5个零点,则的取值范围为( ) A. B. C. D. 10.已知的部分图象如图所示,则的表达式是( ) A. B. C. D. 11.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为( ) A.1 B. C.2 D.3 12.复数满足,则复数等于() A. B. C.2 D.-2 二、填空题:本题共4小题,每小题5分,共20分。 13.已知函数在点处的切线经过原点,函数的最小值为,则________. 14.已知是函数的极大值点,则的取值范围是____________. 15.在平面五边形中,,,,且.将五边形沿对角线折起,使平面与平面所成的二面角为,则沿对角线折起后所得几何体的外接球的表面积是______. 16.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cos θ,直线l的参数方程为 (t为参数,α为直线的倾斜角). (1)写出直线l的普通方程和曲线C的直角坐标方程; (2)若直线l与曲线C有唯一的公共点,求角α的大小. 18.(12分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥. (1)判别与平面的位置关系,并给出证明; (2)求多面体的体积. 19.(12分)已知,,函数的最小值为. (1)求证:; (2)若恒成立,求实数的最大值. 20.(12分)如图,在四面体中,. (1)求证:平面平面; (2)若,求四面体的体积. 21.(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表: 年龄(岁) 频数 5 15 10 10 5 5 了解 4 12 6 5 2 1 (1)分别估计中青年和中老年对新高考了解的概率; (2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关? 了解新高考 不了解新高考 总计 中青年 中老年 总计 附:. 0.050 0.010 0.001 3.841 6.635 10.828 (3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及. 22.(10分)已知椭圆的焦距为2,且过点. (1)求椭圆的方程; (2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点, (ⅰ)证明:平分线段(其中为坐标原点); (ⅱ)当取最小值时,求点的坐标. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 可解出集合,然后进行补集、交集的运算即可. 【题目详解】 ,,则,因此,. 故选:B. 【答案点睛】 本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题. 2、C 【答案解析】 由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成. 【题目详解】 由已知,,因为展开式的通项为,所以 展开式中的系数为. 故选:C. 【答案点睛】 本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题. 3、B 【答案解析】 甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B. 4、B 【答案解析】 解出,分别代入选项中 的值进行验证. 【题目详解】 解:,.当 时,,此时不成立. 当 时,,此时成立,符合题意. 故选:B. 【答案点睛】 本题考查了不等式的解法,考查了集合的关系. 5、A 【答案解析】 试题分析:,,所以,即集合中共有3个元素,故选A. 考点:集合的运算. 6、B 【答案解析】 利用等差数列性质,若,则 求出,再利用等差数列前项和公式得 【题目详解】 解:因为 ,由等差数列性质,若,则得, . 为数列的前项和,则. 故选:. 【答案点睛】 本题考查等差数列性质与等差数列前项和. (1)如果为等差数列,若,则 . (2)要注意等差数列前项和公式的灵活应用,如. 7、B 【答案解析】 由导数确定函数的单调性,利用函数单调性解不等式即可. 【题目详解】 函数,可得, 时,,单调递增, ∵, 故不等式的解集等价于不等式的解集. . ∴. 故选:B. 【答案点睛】 本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题. 8、C 【答案解析】 显然函数在区间内连续,由的一个零点在区间内,则,即可求解. 【题目详解】 由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得, 故选:C 【答案点睛】 本题考查零点存在性定理的应用,属于基础题. 9、A 【答案解析】 由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解. 【题目详解】 当时,, ∵在上有且仅有5个零点, ∴,∴. 故选:A. 【答案点睛】 本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题. 10、D 【答案解析】 由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式. 【题目详解】 由图象可得,函数的最小正周期为,. 将点代入函数的解析式得,得, ,,则,, 因此,. 故选:D. 【答案点睛】 本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题. 11、B 【答案解析】 设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果. 【题目详解】 设,(,).易知直线l的斜率存在且不为0,设为,则直线l的方程为.与抛物线方程联立得,所以,.因为,所以,得,所以,即,,所以. 故选:B. 【答案点睛】 本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题. 12、B 【答案解析】 通过复数的模以及复数的代数形式混合运算,化简求解即可. 【题目详解】 复数满足, ∴, 故选B. 【答案点睛】 本题主要考查复数的基本运算,复数模长的概念,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。 13、0 【答案解析】 求出,求出切线点斜式方程,原点坐标代入,求出的值,求,求出单调区间,进而求出极小值最小值,即可求解. 【题目详解】 ,,, 切线的方程:, 又过原点,所以,, ,. 当时,;当时,. 故函数的最小值,所以. 故答案为:0. 【答案点睛】 本题考查导数的应用,涉及到导数的几何意义、极值最值,属于中档题.. 14、 【答案解析】 方法一:令,则,,当,时,,单调递减,∴时,,,且,∴在上单调递增,时,,,且,∴在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,,所以,这与是函数的极大值点矛盾.综上,. 方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得. 15、 【答案解析】 设的中心为,矩形的中心为,过作垂直于平面的直线,过作垂直于平面的直线,得到直线与的交点为几何体外接球的球心,结合三角形的性质,求得球的半径,利用表面积公式,即可求解. 【题目详解】 设的中心为,矩形的中心为, 过作垂直于平面的直线,过作垂直于平面的直线, 则由球的性质可知,直线与的交点为几何体外接球的球心, 取的中点,连接,, 由条件得,,连接, 因为,从而, 连接,则为所得几何体外接球的半径, 在直角中,由,,可得, 即外接球的半径为, 故所得几何体外接球的表面积为. 故答案为:. 【答案点睛】 本题主要考查了空间几何体的结构特征,以及多面体的外接球的表面积的计算,其中解答中熟记空间几何体的结构特征,求得外接球的半径是解答的关键,着重考查了空间想象能力与运算求解能力,属于中档试题. 16、 【答案解析】 利用正弦定理边化角可得,从而可得,进而求解. 【题目详解】 由, 由正弦定理可得, 即, 整理可得, 又因为,所以, 因为, 所以, 故答案为: 【答案点睛】 本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1)当 时,直线l方程为x=-1;当 时,直线l方程为 y=(x+1)tanα; x2+y2=2x (2)或. 【答案解析】 (1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程; (2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件Δ=0,即可求解. 【题目详解】 (1)当时,直线l的普通方程为x=-1; 当时,消去参数得 直线l的普通方程为y=(x+1)tan α. 由ρ=2cos θ,得ρ2=2ρcos θ, 所以x2+y2=2x,即为曲线C的直角坐标方程. (2)把x=-1+tcos α,y=tsin α代入x2+y2=2x, 整理得t2-4tcos α+3=0. 由Δ=16cos2α-12=0,得cos2α=, 所以cos α=或cos α=, 故直线l的倾斜角α为或. 【答

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开