温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
四川省
南充
高级中学
2023
学年
下学
期一模
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知三棱锥中,为的中点,平面,,,则有下列四个结论:①若为的外心,则;②若为等边三角形,则;③当时,与平面所成的角的范围为;④当时,为平面内一动点,若OM∥平面,则在内轨迹的长度为1.其中正确的个数是( ).
A.1 B.1 C.3 D.4
2.下列判断错误的是( )
A.若随机变量服从正态分布,则
B.已知直线平面,直线平面,则“”是“”的充分不必要条件
C.若随机变量服从二项分布: , 则
D.是的充分不必要条件
3.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biē naò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为( )
A.平方尺 B.平方尺
C.平方尺 D.平方尺
4.已知函数,则( )
A. B. C. D.
5.已知函数,则( )
A.2 B.3 C.4 D.5
6.已知为一条直线,为两个不同的平面,则下列说法正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
7.函数的图象大致是( )
A. B.
C. D.
8.已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )
A. B. C. D.
9.公比为2的等比数列中存在两项,,满足,则的最小值为( )
A. B. C. D.
10.已知集合,则( )
A. B.
C. D.
11.设集合,则( )
A. B. C. D.
12.已知函数,若,则下列不等关系正确的是( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.函数与的图象上存在关于轴的对称点,则实数的取值范围为______.
14.已知,,,,则______.
15.若变量,满足约束条件则的最大值为________.
16.已知全集,,则________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.
(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C交于P,Q两点,求的值.
18.(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设点的极坐标为,直线与曲线的交点为,求的值.
19.(12分)已知函数.
(1)若,求的取值范围;
(2)若,对,不等式恒成立,求的取值范围.
20.(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.
(1)求的方程;
(2)若点在圆上,点为坐标原点,求的取值范围.
21.(12分)已知,求的最小值.
22.(10分)如图,在四棱锥中,平面,,为的中点.
(1)求证:平面;
(2)求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由线面垂直的性质,结合勾股定理可判断①正确; 反证法由线面垂直的判断和性质可判断②错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断③正确;由面面平行的性质定理可得线面平行,可得④正确.
【题目详解】
画出图形:
若为的外心,则,
平面,可得,即,①正确;
若为等边三角形,,又
可得平面,即,由可得
,矛盾,②错误;
若,设与平面所成角为
可得,
设到平面的距离为
由可得
即有,当且仅当取等号.
可得的最大值为,
即的范围为,③正确;
取中点,的中点,连接
由中位线定理可得平面平面
可得在线段上,而,可得④正确;
所以正确的是:①③④
故选:C
【答案点睛】
此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.
2、D
【答案解析】
根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.
【题目详解】
对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;
对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;
对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;
对于选项,,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.
因而是的既不充分也不必要条件,故选项不正确,符合题意.
故选:D
【答案点睛】
本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.
3、A
【答案解析】
根据三视图得出原几何体的立体图是一个三棱锥,将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项.
【题目详解】
由三视图可得,该几何体是一个如图所示的三棱锥,为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以为的中点, 设球半径为,则,所以外接球的表面积,
故选:A.
【答案点睛】
本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题.
4、A
【答案解析】
根据分段函数解析式,先求得的值,再求得的值.
【题目详解】
依题意,.
故选:A
【答案点睛】
本小题主要考查根据分段函数解析式求函数值,属于基础题.
5、A
【答案解析】
根据分段函数直接计算得到答案.
【题目详解】
因为所以.
故选:.
【答案点睛】
本题考查了分段函数计算,意在考查学生的计算能力.
6、D
【答案解析】
A. 若,则或,故A错误;
B. 若,则或故B错误;
C. 若,则或,或与相交;
D. 若,则,正确.
故选D.
7、B
【答案解析】
根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.
【题目详解】
设,,则的定义域为.,当,,单增,当,,单减,则.则在上单增,上单减,.选B.
【答案点睛】
本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.
8、B
【答案解析】
由题意可得c=,设右焦点为F′,由|OP|=|OF|=|OF′|知,
∠PFF′=∠FPO,∠OF′P=∠OPF′,
所以∠PFF′+∠OF′P=∠FPO+∠OPF′,
由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,
∠FPO+∠OPF′=90°,即PF⊥PF′.
在Rt△PFF′中,由勾股定理,得|PF′|=,
由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a2=36,
于是 b2=a2﹣c2=36﹣=16,
所以椭圆的方程为.
故选B.
点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在.
9、D
【答案解析】
根据已知条件和等比数列的通项公式,求出关系,即可求解.
【题目详解】
,
当时,,当时,,
当时,,当时,,
当时,,当时,,
最小值为.
故选:D.
【答案点睛】
本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.
10、B
【答案解析】
先由得或,再计算即可.
【题目详解】
由得或,
,,
又,.
故选:B
【答案点睛】
本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.
11、C
【答案解析】
解对数不等式求得集合,由此求得两个集合的交集.
【题目详解】
由,解得,故.依题意,所以.
故选:C
【答案点睛】
本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.
12、B
【答案解析】
利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.
【题目详解】
∵在R上单调递增,且,∴.
∵的符号无法判断,故与,与的大小不确定,
对A,当时,,故A错误;
对C,当时,,故C错误;
对D,当时,,故D错误;
对B,对,则,故B正确.
故选:B.
【答案点睛】
本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.
【题目详解】
因为关于轴对称的函数为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.
时符合题意.
时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.
故答案为:
【答案点睛】
本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.
14、
【答案解析】
由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.
【题目详解】
,,,,
,,
,
,
.
故答案为:
【答案点睛】
本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.
15、7
【答案解析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.
【题目详解】
作出不等式组所表示的平面区域,如下图阴影部分所示.
观察可知,当直线过点时,有最大值,.
故答案为:.
【答案点睛】
本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.
16、
【答案解析】
利用集合的补集运算即可求解.
【题目详解】
由全集,,
所以.
故答案为:
【答案点睛】
本题考查了集合的补集运算,需理解补集的概念,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)(t为参数),;(Ⅱ)1.
【答案解析】
(Ⅰ)直接由已知写出直线l1的参数方程,设N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由题意可得,即ρ=4cosθ