温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
四川省
大竹县
观音
中学
2023
学年
高考
冲刺
模拟
数学试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数(为虚数单位)的共轭复数对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为( )
A. B. C. D.
3.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为( )
A. B. C. D.
4.设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是( )
A. B.
C. D.
5.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为( )
A. B. C. D.
6.设是虚数单位,则“复数为纯虚数”是“”的( )
A.充要条件 B.必要不充分条件
C.既不充分也不必要条件 D.充分不必要条件
7.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )
A.4 B. C.2 D.
8.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是( )
A. B. C. D.
9.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是( )
A.(0,1)∪(1,e) B.
C. D.(0,1)
10.已知集合.为自然数集,则下列表示不正确的是( )
A. B. C. D.
11.设(是虚数单位),则( )
A. B.1 C.2 D.
12.执行如图所示的程序框图,如果输入,则输出属于( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.从集合中随机取一个元素,记为,从集合中随机取一个元素,记为,则的概率为_______.
14.若函数在区间上有且仅有一个零点,则实数的取值范围有___________.
15.若向量满足,则实数的取值范围是____________.
16.已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数,其中.
(1)函数在处的切线与直线垂直,求实数的值;
(2)若函数在定义域上有两个极值点,且.
①求实数的取值范围;
②求证:.
18.(12分)等差数列中,.
(1)求的通项公式;
(2)设,记为数列前项的和,若,求.
19.(12分)已知数列满足,等差数列满足,
(1)分别求出,的通项公式;
(2)设数列的前n项和为,数列的前n项和为证明:.
20.(12分)已知数列,其前项和为,若对于任意,,且,都有.
(1)求证:数列是等差数列
(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.
21.(12分)△的内角的对边分别为,且.
(1)求角的大小
(2)若,△的面积,求△的周长.
22.(10分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.
(1)求椭圆的标准方程;
(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
将复数化简得,,即可得到对应的点为,即可得出结果.
【题目详解】
,对应的点位于第四象限.
故选:.
【答案点睛】
本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.
2、C
【答案解析】
利用线线、线面、面面相应的判定与性质来解决.
【题目详解】
如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线
平行于平面与平面的交线时也有,,故②错误;若,则垂直平面
内以及与平面平行的所有直线,故③正确;若,则存在直线且,因
为,所以,从而,故④正确.
故选:C.
【答案点睛】
本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.
3、C
【答案解析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.
【题目详解】
∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.
故选:C.
【答案点睛】
本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.
4、B
【答案解析】
由题意首先确定导函数的符号,然后结合题意确定函数在区间和处函数的特征即可确定函数图像.
【题目详解】
函数在上可导,其导函数为,且函数在处取得极大值,
当时,;当时,;当时,.
时,,时,,
当或时,;当时,.
故选:
【答案点睛】
根据函数取得极大值,判断导函数在极值点附近左侧为正,右侧为负,由正负情况讨论图像可能成立的选项,是判断图像问题常见方法,有一定难度.
5、C
【答案解析】
根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.
【题目详解】
解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,,
因为是奇函数,
所以,解得,
因为,所以的最小值为.
故选:
【答案点睛】
本题考查三角函数的变换以及三角函数的性质,属于基础题.
6、D
【答案解析】
结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.
【题目详解】
若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.
故选:D
【答案点睛】
本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.
7、A
【答案解析】
由,两边平方后展开整理,即可求得,则的长可求.
【题目详解】
解:,
,
,,
,,
.
,
,
故选:.
【答案点睛】
本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.
8、C
【答案解析】
化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由
得可判断④.
【题目详解】
由题意,,所以,故①正确;
为偶函数,故②错误;当
时,,单调递减,故③正确;若对任意,都有
成立,则为最小值点,为最大值点,则的最小值为
,故④正确.
故选:C.
【答案点睛】
本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.
9、D
【答案解析】
原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.
【题目详解】
由题意,a>2,令t,
则f(x)=a⇔⇔
⇔⇔.
记g(t).
当t<2时,g(t)=2ln(﹣t)(t)单调递减,且g(﹣2)=2,
又g(2)=2,∴只需g(t)=2在(2,+∞)上有两个不等于2的不等根.
则⇔,
记h(t)(t>2且t≠2),
则h′(t).
令φ(t),则φ′(t)2.
∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.
∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,
则h(t)在(2,2)上单调递增,在(2,+∞)上单调递减.
由,可得,即a<2.
∴实数a的取值范围是(2,2).
故选:D.
【答案点睛】
此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.
10、D
【答案解析】
集合.为自然数集,由此能求出结果.
【题目详解】
解:集合.为自然数集,
在A中,,正确;
在B中,,正确;
在C中,,正确;
在D中,不是的子集,故D错误.
故选:D.
【答案点睛】
本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.
11、A
【答案解析】
先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出.
【题目详解】
∵,∴.
故选:A.
【答案点睛】
本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,
属于容易题.
12、B
【答案解析】
由题意,框图的作用是求分段函数的值域,求解即得解.
【题目详解】
由题意可知,
框图的作用是求分段函数的值域,
当;
当
综上:.
故选:B
【答案点睛】
本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先求出随机抽取a,b的所有事件数,再求出满足的事件数,根据古典概型公式求出结果.
【题目详解】
解:从集合中随机取一个元素,记为,从集合中随机取一个元素,记为,
则的事件数为9个,即为,,,
其中满足的有,,,共有8个,
故的概率为.
【答案点睛】
本题考查了古典概型的计算,解题的关键是准确列举出所有事件数.
14、或
【答案解析】
函数的零点方程的根,求出方程的两根为,,从而可得或,即或.
【题目详解】
函数在区间的零点方程在区间的根,所以,解得:,,
因为函数在区间上有且仅有一个零点,
所以或,即或.
【答案点睛】
本题考查函数的零点与方程根的关系,在求含绝对值方程时,要注意对绝对值内数的正负进行讨论.
15、
【答案解析】
根据题意计算,解得答案.
【题目详解】
,故,解得.
故答案为:.
【答案点睛】
本题考查了向量的数量积,意在考查学生的计算能力.
16、
【答案解析】
由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率.注意对称性,问题应该有两解.
【题目详解】
直线过抛物线的焦点,,过,分别作的准线的垂线,垂足分别为,,由抛物线的定义知,.
因为,所以.因为,
所以,从而.
设直线的倾斜角为,不妨设,如图,则,
,同理,
则,
解得,,由对称性还有满足题意.
,综上,.
【答案点睛】
本题考查抛物线的性质,考查抛物线的焦点弦问题,掌握抛物线的定义,把抛物线上点到焦点距离与它到距离联系起来是解题关键.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)①;②详见解析.
【答案解析】
(1)由函数