分享
吉林省长春市榆树市2023学年高三3月份模拟考试数学试题(含解析).doc
下载文档

ID:14117

大小:1.97MB

页数:19页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
吉林省 长春市 榆树市 2023 学年 月份 模拟考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知Sn为等比数列{an}的前n项和,a5=16,a3a4=﹣32,则S8=( ) A.﹣21 B.﹣24 C.85 D.﹣85 2.已知,函数在区间上恰有个极值点,则正实数的取值范围为( ) A. B. C. D. 3.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( ) A.20 B.27 C.54 D.64 4.若复数()是纯虚数,则复数在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( ) A. B. C. D. 6.设为等差数列的前项和,若,则 A. B. C. D. 7.复数的共轭复数为( ) A. B. C. D. 8.对两个变量进行回归分析,给出如下一组样本数据:,,,,下列函数模型中拟合较好的是( ) A. B. C. D. 9.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为( ) A. B. C. D. 10.设,,,则、、的大小关系为( ) A. B. C. D. 11.若2m>2n>1,则( ) A. B.πm﹣n>1 C.ln(m﹣n)>0 D. 12.在平面直角坐标系中,已知是圆上两个动点,且满足,设到直线的距离之和的最大值为,若数列的前项和恒成立,则实数的取值范围是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.设为锐角,若,则的值为____________. 14.若四棱锥的侧面内有一动点Q,已知Q到底面的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角平面角的大小为时,k的值为______. 15.若双曲线的两条渐近线斜率分别为,,若,则该双曲线的离心率为________. 16.某地区连续5天的最低气温(单位:℃)依次为8,,,0,2,则该组数据的标准差为_______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)等差数列的公差为2, 分别等于等比数列的第2项,第3项,第4项. (1)求数列和的通项公式; (2)若数列满足,求数列的前2020项的和. 18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1)写出的普通方程和的直角坐标方程; (2)设点在上,点在上,求的最小值以及此时的直角坐标. 19.(12分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,. (1)求椭圆的方程; (2)延长分别交椭圆于点(不重合).设,求的最小值. 20.(12分)如图,底面ABCD是边长为2的菱形,,平面ABCD,,,BE与平面ABCD所成的角为. (1)求证:平面平面BDE; (2)求二面角B-EF-D的余弦值. 21.(12分)在四棱锥中,底面是边长为2的菱形,是的中点. (1)证明:平面; (2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积. 22.(10分)底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,. (1)求证:; (2)求二面角的正弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 由等比数列的性质求得a1q4=16,a12q5=﹣32,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可. 【题目详解】 设等比数列{an}的公比为q, ∵a5=16,a3a4=﹣32, ∴a1q4=16,a12q5=﹣32, ∴q=﹣2,则, 则, 故选:D. 【答案点睛】 本题主要考查等比数列的前n项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题. 2、B 【答案解析】 先利用向量数量积和三角恒等变换求出 ,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围. 【题目详解】 解: 令,解得对称轴,, 又函数在区间恰有个极值点,只需 解得. 故选:. 【答案点睛】 本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题. (1)利用三角恒等变换及辅助角公式把三角函数关系式化成或 的形式; (2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围. 3、B 【答案解析】 设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。 【题目详解】 设大正方体的边长为,则小正方体的边长为, 设落在小正方形内的米粒数大约为, 则,解得: 故选:B 【答案点睛】 本题主要考查了概率模拟的应用,考查计算能力,属于基础题。 4、B 【答案解析】 化简复数,由它是纯虚数,求得,从而确定对应的点的坐标. 【题目详解】 是纯虚数,则,, ,对应点为,在第二象限. 故选:B. 【答案点睛】 本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题. 5、A 【答案解析】 由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为 故答案为A. 点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 6、C 【答案解析】 根据等差数列的性质可得,即, 所以,故选C. 7、D 【答案解析】 直接相乘,得,由共轭复数的性质即可得结果 【题目详解】 ∵ ∴其共轭复数为. 故选:D 【答案点睛】 熟悉复数的四则运算以及共轭复数的性质. 8、D 【答案解析】 作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线. 【题目详解】 如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项, 故选:D. 【答案点睛】 本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好. 9、B 【答案解析】 利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可. 【题目详解】 如图,,设为的中点,为的中点, 由图可知过且与平行的平面为平面,所以直线即为直线, 由题易知,的补角,分别为, 设三棱柱的棱长为2, 在中,, ; 在中,, ; 在中,, , . 故选:B 【答案点睛】 本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养. 10、D 【答案解析】 因为,, 所以且在上单调递减,且 所以,所以, 又因为,,所以, 所以. 故选:D. 【答案点睛】 本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小. 11、B 【答案解析】 根据指数函数的单调性,结合特殊值进行辨析. 【题目详解】 若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确; 而当m,n时,检验可得,A、C、D都不正确, 故选:B. 【答案点睛】 此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项. 12、B 【答案解析】 由于到直线的距离和等于中点到此直线距离的二倍,所以只需求中点到此直线距离的最大值即可。再得到中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和中点到此直线距离的最大值的关系可以求出。再通过裂项的方法求的前项和,即可通过不等式来求解的取值范围. 【题目详解】 由,得,.设线段的中点,则,在圆上,到直线的距离之和等于点到该直线的距离的两倍,点到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆的圆心到直线的距离为,,,. . 故选: 【答案点睛】 本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 ∵为锐角,,∴, ∴,, 故. 14、 【答案解析】 二面角平面角为,点Q到底面的距离为,点Q到定直线得距离为d,则.再由点Q到底面的距离与到点P的距离之比为正常数k,可得,由此可得,则由可求k值. 【题目详解】 解:如图, 设二面角平面角为,点Q到底面的距离为, 点Q到定直线的距离为d,则,即. ∵点Q到底面的距离与到点P的距离之比为正常数k, ∴,则, ∵动点Q的轨迹是抛物线, ∴,即则. ∴二面角的平面角的余弦值为 解得:(). 故答案为:. 【答案点睛】 本题考查了四棱锥的结构特征,由四棱锥的侧面与底面的夹角求参数值,属于中档题. 15、2 【答案解析】 由题得,再根据求解即可. 【题目详解】 双曲线的两条渐近线为,可令,,则,所以,解得. 故答案为:2. 【答案点睛】 本题考查双曲线渐近线求离心率的问题.属于基础题. 16、 【答案解析】 先求出这组数据的平均数,再求出这组数据的方差,由此能求出该组数据的标准差. 【题目详解】 解:某地区连续5天的最低气温(单位:依次为8,,,0,2, 平均数为:, 该组数据的方差为: , 该组数据的标准差为1. 故答案为:1. 【答案点睛】 本题考查一组数据据的标准差的求法,考查平均数、方差、标准差的定义等基础知识,考查运算求解能力,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1),; (2). 【答案解析】 (1)根据题意同时利用等差、等比数列的通项公式即可求得数列和的通项公式; (2)求出数列的通项公式,再利用错位相减法即可求得数列的前2020项的和. 【题目详解】 (1)依题意得: , 所以 , 所以 解得 设等比数列的公比为,所以 又 (2)由(1)知, 因为 ① 当时, ② 由①②得,,即, 又当时,不满足上式, . 数列的前2020项的和 设 ③, 则 ④, 由③④得: , 所以, 所以. 【答案点

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开