温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
吉林省
永吉县
实验
高级中学
2023
学年
月份
模拟考试
数学试题
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是( )
A. B.
C. D.
2.执行如图所示的程序框图,输出的结果为( )
A. B.4 C. D.
3.已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是( )
A. B. C. D.
4.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为( )
A. B. C. D.
5.设i为数单位,为z的共轭复数,若,则( )
A. B. C. D.
6.函数在的图象大致为
A. B.
C. D.
7.已知函数若函数在上零点最多,则实数的取值范围是( )
A. B. C. D.
8.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为( )
A. B.
C. D.
9.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为( )
A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间
10.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( )
A.
B.
C.
D.
11.已知函数,若,则的值等于( )
A. B. C. D.
12.已知向量,,设函数,则下列关于函数的性质的描述正确的是
A.关于直线对称 B.关于点对称
C.周期为 D.在上是增函数
二、填空题:本题共4小题,每小题5分,共20分。
13.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.
14.已知集合,,则________.
15.已知△的三个内角为,,,且,,成等差数列, 则的最小值为__________,最大值为___________.
16.已知全集,集合则_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数,.
(Ⅰ)讨论的单调性;
(Ⅱ)时,若,,求证:.
18.(12分)如图,在中,已知,,,为线段的中点,是由绕直线旋转而成,记二面角的大小为.
(1)当平面平面时,求的值;
(2)当时,求二面角的余弦值.
19.(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,,.
(1)求数列与的通项公式;
(2)求数列的前项和;
(3)设为数列的前项和,若对于任意,有,求实数的值.
20.(12分)已知函数.
(1)讨论的单调性;
(2)若恒成立,求实数的取值范围.
21.(12分)选修4-5:不等式选讲
设函数.
(1) 证明:;
(2)若不等式的解集非空,求的取值范围.
22.(10分)如图,在中,角的对边分别为,且满足,线段的中点为.
(Ⅰ)求角的大小;
(Ⅱ)已知,求的大小.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.
【题目详解】
的定义域为,,
当时,,故在单调递减;
不妨设,而,知在单调递减,
从而对任意、,恒有,
即,
,,
令,则,原不等式等价于在单调递减,即,
从而,因为,
所以实数a的取值范围是
故选:D.
【答案点睛】
此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.
2、A
【答案解析】
模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.
【题目详解】
程序运行过程如下:
,;,;,;
,;,;
,;,,退出循环,输出结果为,
故选:A.
【答案点睛】
该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.
3、C
【答案解析】
在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.
【题目详解】
∵直线是曲线的一条对称轴.
,又.
.
∴平移后曲线为.
曲线的一个对称中心为.
.
,注意到
故的最小值为.
故选:C.
【答案点睛】
本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.
4、C
【答案解析】
由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.
【题目详解】
当时,则,,
所以,,显然当时,
,故,,若对于任意正整数不等式
恒成立,即对于任意正整数恒成立,即对于任
意正整数恒成立,设,,令,解得,
令,解得,考虑到,故有当时,单调递增,
当时,有单调递减,故数列的最大值为,
所以.
故选:C.
【答案点睛】
本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.
5、A
【答案解析】
由复数的除法求出,然后计算.
【题目详解】
,
∴.
故选:A.
【答案点睛】
本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.
6、A
【答案解析】
因为,所以排除C、D.当从负方向趋近于0时,,可得.故选A.
7、D
【答案解析】
将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.
【题目详解】
由图知与有个公共点即可,
即,当设切点,
则,
.
故选:D.
【答案点睛】
本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.
8、D
【答案解析】
设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.
【题目详解】
显然直线不满足条件,故可设直线:,
,,由,得,
,
解得或,
,,
,
,
,
解得,
直线的斜率的取值范围为.
故选:D.
【答案点睛】
本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.
9、D
【答案解析】
可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解
【题目详解】
当且时,.令得.可得和的变化情况如下表:
令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.
故选:D
【答案点睛】
本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题
10、D
【答案解析】
由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D.
11、B
【答案解析】
由函数的奇偶性可得,
【题目详解】
∵
其中为奇函数,也为奇函数
∴也为奇函数
∴
故选:B
【答案点睛】
函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:①奇函数±奇函数=奇函数;②奇函数×奇函数=偶函数;③奇函数÷奇函数=偶函数;④偶函数±偶函数=偶函数;⑤偶函数×偶函数=偶函数;⑥奇函数×偶函数=奇函数;⑦奇函数÷偶函数=奇函数
12、D
【答案解析】
当时,,∴f(x)不关于直线对称;
当时, ,∴f(x)关于点对称;
f(x)得周期,
当时, ,∴f(x)在上是增函数.
本题选择D选项.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设圆柱的轴截面的边长为x,可求得,代入圆柱的表面积公式,即得解
【题目详解】
设圆柱的轴截面的边长为x,
则由,得,
∴.
故答案为:
【答案点睛】
本题考查了圆柱的轴截面和表面积,考查了学生空间想象,转化划归,数学运算的能力,属于基础题.
14、
【答案解析】
利用交集定义直接求解.
【题目详解】
解:集合奇数,
偶数,
.
故答案为:.
【答案点睛】
本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,属于基础题.
15、
【答案解析】
根据正弦定理可得,利用余弦定理以及均值不等式,可得角的范围,然后构造函数,利用导数,研究函数性质,可得结果.
【题目详解】
由,,成等差数列
所以
所以
又
化简可得
当且仅当时,取等号
又,所以
令,
则
当,即时,
当,即时,
则在递增,在递减
所以
由,
所以
所以的最小值为
最大值为
故答案为:,
【答案点睛】
本题考查等差数列、正弦定理、余弦定理,还考查了不等式、导数的综合应用,难点在于根据余弦定理以及不等式求出,考验分析能力以及逻辑思维能力,属难题.
16、
【答案解析】
根据补集的定义求解即可.
【题目详解】
解:
.
故答案为.
【答案点睛】
本题主要考查了补集的运算,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)证明见解析;(2)证明见解析.
【答案解析】
(1)首先对函数求导,再根据参数的取值,讨论的正负,即可求出关于的单调性即可;
(2)首先通过构造新函数,讨论新函数的单调性,根据新函数的单调性证明.
【题目详解】
(1),令,
则,令得,
当时,则在单调递减,
当时,则在单调递增,
所以,
当时,,即,则在上单调递增,
当时,,
易知当时,,
当时,,
由零点存在性定理知,,不妨设,使得,
当时,,即,
当时,,即,
当时,,即,
所以在和上单调递增,在单调递减;
(2)证明:构造函数,,
,,
整理得,
,
(当时等号成立),
所以在上单调递增,则,
所以在上单调递增,,
这里不妨设,欲证,
即证由(1)知时,在上单调递增,
则需证,
由已知有,
只需证,
即证,
由在上单调递增,且时,
有,
故成立,从而得证.
【答案点睛】
本题主要考查了导数含参分类讨论单调性,借助构造函数和单调性证明不等式,属于难题.
18、 (1) ;(2).
【答案解析】
(1)平面平面,建立坐标系,根据法向量互相垂直求得;(2)求两个平面的法向量的夹角.
【题目详解】
(1) 如图,以为原点,在平面内垂直于的直线为轴所在的直线分别为轴,轴,建立空间直角坐标系,则
,设为平面的一个法向量,由得
,取,则
因为平面的一个法向量为由平面平面,得所以即.
(2) 设二面角的大小为,当平面的一个法向量为,
综上