温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京师范大学
蚌埠
附属
学校
2023
学年
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:
则下列结论正确的是( ).
A.与2016年相比,2019年不上线的人数有所增加
B.与2016年相比,2019年一本达线人数减少
C.与2016年相比,2019年二本达线人数增加了0.3倍
D.2016年与2019年艺体达线人数相同
2.已知函数在区间有三个零点,,,且,若,则的最小正周期为( )
A. B. C. D.
3.已知函数是上的偶函数,是的奇函数,且,则的值为( )
A. B. C. D.
4.已知函数,,若方程恰有三个不相等的实根,则的取值范围为( )
A. B.
C. D.
5.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则( )
A. B.3 C. D.2
6.已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.若不等式对恒成立,则实数的取值范围是( )
A. B. C. D.
8.已知函数,,若对任意的,存在实数满足,使得,则的最大值是( )
A.3 B.2 C.4 D.5
9. “且”是“”的( )
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.既不充分也不必要条件
10.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()
A. B. C. D.
11.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则( )
A.,b为任意非零实数 B.,a为任意非零实数
C.a、b均为任意实数 D.不存在满足条件的实数a,b
12.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设实数满足约束条件,则的最大值为______.
14.设满足约束条件,则目标函数的最小值为_.
15.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)
16.已知复数,其中是虚数单位.若的实部与虚部相等,则实数的值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).
(1)请用角表示清洁棒的长;
(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.
18.(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;
(2)设P是椭圆上的动点,求面积的最大值.
19.(12分)(本小题满分12分)已知椭圆C:的离心率为,连接椭圆四个顶点形成的四边形面积为4.
(1)求椭圆C的标准方程;
(2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且O为坐标原点,当时,求t的取值范围.
20.(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:
(1)证明:平面平面ABC;
(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.
21.(12分)的内角,,的对边分别为,,已知,.
(1)求;
(2)若的面积,求.
22.(10分)已知函数f(x)=xlnx,g(x)=,
(1)求f(x)的最小值;
(2)对任意,都有恒成立,求实数a的取值范围;
(3)证明:对一切,都有成立.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.
【题目详解】
设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,
2019年不上线人数为,故A正确;
2016年高考一本人数,2019年高考一本人数,故B错误;
2019年二本达线人数,2016年二本达线人数,增加了
倍,故C错误;
2016年艺体达线人数,2019年艺体达线人数,故D错误.
故选:A.
【答案点睛】
本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.
2、C
【答案解析】
根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期.
【题目详解】
解:由于在区间有三个零点,,,
当时,,
∴由对称轴可知,满足,
即.
同理,满足,即,
∴,,
所以最小正周期为:.
故选:C.
【答案点睛】
本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.
3、B
【答案解析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.
【题目详解】
为上的奇函数,
,
而函数是上的偶函数,,
,
故为周期函数,且周期为
故选:B
【答案点睛】
本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.
4、B
【答案解析】
由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.
【题目详解】
由题意知方程在上恰有三个不相等的实根,
即,①.
因为,①式两边同除以,得.
所以方程有三个不等的正实根.
记,,则上述方程转化为.
即,所以或.
因为,当时,,所以在,上单调递增,且时,.
当时,,在上单调递减,且时,.
所以当时,取最大值,当,有一根.
所以恰有两个不相等的实根,所以.
故选:B.
【答案点睛】
本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.
5、D
【答案解析】
根据抛物线的定义求得,由此求得的长.
【题目详解】
过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.
故选:D
【答案点睛】
本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.
6、D
【答案解析】
设,由,得,利用复数相等建立方程组即可.
【题目详解】
设,则,所以,
解得,故,复数在复平面内对应的点为,在第四象限.
故选:D.
【答案点睛】
本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.
7、B
【答案解析】
转化为,构造函数,利用导数研究单调性,求函数最值,即得解.
【题目详解】
由,可知.
设,则,
所以函数在上单调递增,
所以.
所以.
故的取值范围是.
故选:B
【答案点睛】
本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
8、A
【答案解析】
根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值.
【题目详解】
,,对任意的,存在实数满足,使得,
易得,即恒成立,
,对于恒成立,
设,则,
令,在恒成立,
,
故存在,使得,即,
当时,,单调递减;
当时,,单调递增.
,将代入得:
,
,且,
故选:A
【答案点睛】
本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.
9、A
【答案解析】
画出“,,,所表示的平面区域,即可进行判断.
【题目详解】
如图,“且”表示的区域是如图所示的正方形,
记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,
显然是的真子集,所以答案是充分非必要条件,
故选:.
【答案点睛】
本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.
10、A
【答案解析】
由直线过椭圆的左焦点,得到左焦点为,且,
再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解.
【题目详解】
由题意,直线经过椭圆的左焦点,令,解得,
所以,即椭圆的左焦点为,且 ①
直线交轴于,所以,,
因为,所以,所以,
又由点在椭圆上,得 ②
由,可得,解得,
所以,
所以椭圆的离心率为.
故选A.
【答案点睛】
本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出 ,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).
11、A
【答案解析】
求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.
【题目详解】
依题意,在点处的切线与直线AB平行,即有
,所以,由于对任意上式都成立,可得,为非零实数.
故选:A
【答案点睛】
本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题.
12、C
【答案解析】
令圆的半径为1,则,故选C.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
试题分析:作出不等式组所表示的平面区域如图,当直线过点时,最大,且
考点:线性规划.
14、
【答案解析】
根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值.
【题目详解】
由满足约束条件,画出可行域如图所示阴影部分:
将目标函数,转化为,
平移直线,找到直线在轴上截距最小时的点
此时,目标函数 取得最小值,最小值为
故答案为:-1
【答案点睛】
本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.
15、>
【答案解析】
根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.
【题目详解】
,故
.
,
.
要比较的大小,只需比较与,两者作差并化简得
①,
由于为互不相等的正实数,故,也即
,也即.
故答案为:
【答案点睛】
本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.
16、
【答案解析】
直接由复数代数形式的乘法运算化简,结合已知条件即可求出实数的值.
【题目详解】
解:的实部与虚部相等,
所以,计算得出.
故答案为:
【答案点睛】
本题考查复数的