分享
北京师范大学蚌埠附属学校2023学年高三下学期联考数学试题(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
北京师范大学 蚌埠 附属 学校 2023 学年 下学 联考 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图: 则下列结论正确的是( ). A.与2016年相比,2019年不上线的人数有所增加 B.与2016年相比,2019年一本达线人数减少 C.与2016年相比,2019年二本达线人数增加了0.3倍 D.2016年与2019年艺体达线人数相同 2.已知函数在区间有三个零点,,,且,若,则的最小正周期为( ) A. B. C. D. 3.已知函数是上的偶函数,是的奇函数,且,则的值为( ) A. B. C. D. 4.已知函数,,若方程恰有三个不相等的实根,则的取值范围为( ) A. B. C. D. 5.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则( ) A. B.3 C. D.2 6.已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.若不等式对恒成立,则实数的取值范围是( ) A. B. C. D. 8.已知函数,,若对任意的,存在实数满足,使得,则的最大值是( ) A.3 B.2 C.4 D.5 9. “且”是“”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件 10.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是() A. B. C. D. 11.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则( ) A.,b为任意非零实数 B.,a为任意非零实数 C.a、b均为任意实数 D.不存在满足条件的实数a,b 12.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.设实数满足约束条件,则的最大值为______. 14.设满足约束条件,则目标函数的最小值为_. 15.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=) 16.已知复数,其中是虚数单位.若的实部与虚部相等,则实数的值为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,). (1)请用角表示清洁棒的长; (2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度. 18.(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为. (1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标; (2)设P是椭圆上的动点,求面积的最大值. 19.(12分)(本小题满分12分)已知椭圆C:的离心率为,连接椭圆四个顶点形成的四边形面积为4. (1)求椭圆C的标准方程; (2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且O为坐标原点,当时,求t的取值范围. 20.(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中: (1)证明:平面平面ABC; (2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值. 21.(12分)的内角,,的对边分别为,,已知,. (1)求; (2)若的面积,求. 22.(10分)已知函数f(x)=xlnx,g(x)=, (1)求f(x)的最小值; (2)对任意,都有恒成立,求实数a的取值范围; (3)证明:对一切,都有成立. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D. 【题目详解】 设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为, 2019年不上线人数为,故A正确; 2016年高考一本人数,2019年高考一本人数,故B错误; 2019年二本达线人数,2016年二本达线人数,增加了 倍,故C错误; 2016年艺体达线人数,2019年艺体达线人数,故D错误. 故选:A. 【答案点睛】 本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目. 2、C 【答案解析】 根据题意,知当时,,由对称轴的性质可知和,即可求出,即可求出的最小正周期. 【题目详解】 解:由于在区间有三个零点,,, 当时,, ∴由对称轴可知,满足, 即. 同理,满足,即, ∴,, 所以最小正周期为:. 故选:C. 【答案点睛】 本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力. 3、B 【答案解析】 根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出. 【题目详解】 为上的奇函数, , 而函数是上的偶函数,, , 故为周期函数,且周期为 故选:B 【答案点睛】 本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题. 4、B 【答案解析】 由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论. 【题目详解】 由题意知方程在上恰有三个不相等的实根, 即,①. 因为,①式两边同除以,得. 所以方程有三个不等的正实根. 记,,则上述方程转化为. 即,所以或. 因为,当时,,所以在,上单调递增,且时,. 当时,,在上单调递减,且时,. 所以当时,取最大值,当,有一根. 所以恰有两个不相等的实根,所以. 故选:B. 【答案点睛】 本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题. 5、D 【答案解析】 根据抛物线的定义求得,由此求得的长. 【题目详解】 过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以. 故选:D 【答案点睛】 本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题. 6、D 【答案解析】 设,由,得,利用复数相等建立方程组即可. 【题目详解】 设,则,所以, 解得,故,复数在复平面内对应的点为,在第四象限. 故选:D. 【答案点睛】 本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题. 7、B 【答案解析】 转化为,构造函数,利用导数研究单调性,求函数最值,即得解. 【题目详解】 由,可知. 设,则, 所以函数在上单调递增, 所以. 所以. 故的取值范围是. 故选:B 【答案点睛】 本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 8、A 【答案解析】 根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值. 【题目详解】 ,,对任意的,存在实数满足,使得, 易得,即恒成立, ,对于恒成立, 设,则, 令,在恒成立, , 故存在,使得,即, 当时,,单调递减; 当时,,单调递增. ,将代入得: , ,且, 故选:A 【答案点睛】 本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题. 9、A 【答案解析】 画出“,,,所表示的平面区域,即可进行判断. 【题目详解】 如图,“且”表示的区域是如图所示的正方形, 记为集合P,“”表示的区域是单位圆及其内部,记为集合Q, 显然是的真子集,所以答案是充分非必要条件, 故选:. 【答案点睛】 本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易. 10、A 【答案解析】 由直线过椭圆的左焦点,得到左焦点为,且, 再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解. 【题目详解】 由题意,直线经过椭圆的左焦点,令,解得, 所以,即椭圆的左焦点为,且 ① 直线交轴于,所以,, 因为,所以,所以, 又由点在椭圆上,得 ② 由,可得,解得, 所以, 所以椭圆的离心率为. 故选A. 【答案点睛】 本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出 ,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围). 11、A 【答案解析】 求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数. 【题目详解】 依题意,在点处的切线与直线AB平行,即有 ,所以,由于对任意上式都成立,可得,为非零实数. 故选:A 【答案点睛】 本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题. 12、C 【答案解析】 令圆的半径为1,则,故选C. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 试题分析:作出不等式组所表示的平面区域如图,当直线过点时,最大,且 考点:线性规划. 14、 【答案解析】 根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值. 【题目详解】 由满足约束条件,画出可行域如图所示阴影部分: 将目标函数,转化为, 平移直线,找到直线在轴上截距最小时的点 此时,目标函数 取得最小值,最小值为 故答案为:-1 【答案点睛】 本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题. 15、> 【答案解析】 根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系. 【题目详解】 ,故 . , . 要比较的大小,只需比较与,两者作差并化简得 ①, 由于为互不相等的正实数,故,也即 ,也即. 故答案为: 【答案点睛】 本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题. 16、 【答案解析】 直接由复数代数形式的乘法运算化简,结合已知条件即可求出实数的值. 【题目详解】 解:的实部与虚部相等, 所以,计算得出. 故答案为: 【答案点睛】 本题考查复数的

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开